题名 | Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods |
作者 | |
发表日期 | 2019-06 |
发表期刊 | CHEMICAL RESEARCH IN TOXICOLOGY 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
其他关键词 | TRITERPENOID SAPONINS ; NATURAL COMPOUND ; CYTOTOXICITY ; CELL ; CLASSIFICATION ; CHOLESTEROL ; DIGITONIN ; OSW-1 ; MEMBRANES ; BEARING |
摘要 | Saponins are a type of compounds bearing a hydrophobic steroid/triterpenoid moiety and hydrophilic carbohydrate branches. The majority of the saponins demonstrate a broad range of prominent pharmacological activities. Nevertheless, many saponins also possess harmful hemolytic toxicity, which can cause the lysis of erythrocytes and thereby hamper their applications in medicine. As such, the organic synthesis of diverse saponins with versatile therapeutic effects and without hemolytic toxicity has gained considerable interests among medicinal/organic chemists. To date, the non-hemolytic saponins of interests have usually been designed by the traditional trial-and-error method or discovered by serendipity. It would be more efficient to develop an in silico method to rationally design promising saponins without hemolytic toxicity prior to the laborious organic synthesis, despite the fact that there is, so far, no computational model to predict the hemolytic toxicity of saponins. To this end, we manually curate 331 hemolytic and 121 non-hemolytic saponins from the literature for the first time and build the first machine-learning-based hemolytic toxicity classification model for the saponins, which provides encouraging performance with 95% confidence intervals for accuracy (0.906 +/- 0.009), precision (0.904 +/- 0.012), specificity (0.711 +/- 0.039), sensitivity (0.978 +/- 0.010), Fl-score (0.939 +/- 0.006), and Matthews correlation coefficient (0.756 +/- 0.025) on the test set by averaging over 19 different random data-partitioning schemes. Moreover, we have developed a free program called e-Hemolytic-Saponin for the automatic prediction and design of hemolytic/non-hemolytic saponins. To the best of our knowledge, we herein compile the first comprehensive saponin dataset focused on hemolytic toxicity, build the first informative model of hemolytic toxicity for the saponins, and implement the first convenient software that will enable organic/medicinal chemists to automatically predict and design the saponins of interests. |
资助项目 | Natural Science Foundation of Zhejiang ProvinceNatural Science Foundation of Zhejiang Province [LY17B030007]; Wenzhou Medical University |
出版者 | AMER CHEMICAL SOC |
出版地 | WASHINGTON |
ISSN | 0893-228X |
EISSN | 1520-5010 |
卷号 | 32期号:6页码:1014-1026 |
DOI | 10.1021/acs.chemrestox.8b00347 |
页数 | 13 |
WOS类目 | Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Toxicology |
WOS研究方向 | Pharmacology & Pharmacy ; Chemistry ; Toxicology |
WOS记录号 | WOS:000472241800013 |
收录类别 | SCIE ; PUBMED ; SCOPUS |
URL | 查看原文 |
PubMed ID | 30915843 |
SCOPUSEID | 2-s2.0-85064829867 |
通讯作者地址 | [Zheng, Suqing]School of Pharmaceutical Sciences,Wenzhou Medical University,Wenzhou, Zhejiang,325035,China |
Scopus学科分类 | Toxicology |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/10344 |
专题 | 药学院(分析测试中心) 药学院(分析测试中心)_生物有机与药物化学研究中心 |
通讯作者 | Zheng, Suqing |
作者单位 | 1.School of Pharmaceutical Sciences,Wenzhou Medical University,Wenzhou, Zhejiang,325035,China; 2.Chemical Biology Research Center,Wenzhou Medical University,Wenzhou, Zhejiang,325035,China; 3.Genetic Screening Center,National Institute of Biological Sciences,Beijing,102206,China; 4.Tsinghua Institute of Multidisciplinary Biomedical Research,Tsinghua University,Beijing,100084,China; 5.Center of Chemical Biology,Guangzhou Institute of Biomedicine and Health,Chinese Academy of Sciences,Guangzhou, Guangdong,510530,China |
第一作者单位 | 药学院(分析测试中心); 生物有机与药物化学研究中心 |
通讯作者单位 | 药学院(分析测试中心) |
第一作者的第一单位 | 药学院(分析测试中心) |
推荐引用方式 GB/T 7714 | Zheng, Suqing,Wang, Yibing,Liu, Hongmei,et al. Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods[J]. CHEMICAL RESEARCH IN TOXICOLOGY,2019,32(6):1014-1026. |
APA | Zheng, Suqing, Wang, Yibing, Liu, Hongmei, Chang, Wenping, Xu, Yong, & Lin, Fu. (2019). Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods. CHEMICAL RESEARCH IN TOXICOLOGY, 32(6), 1014-1026. |
MLA | Zheng, Suqing,et al."Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods".CHEMICAL RESEARCH IN TOXICOLOGY 32.6(2019):1014-1026. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论