科研成果详情

题名Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
作者
发表日期2019-06
发表期刊CHEMICAL RESEARCH IN TOXICOLOGY   影响因子和分区
语种英语
原始文献类型Article
其他关键词TRITERPENOID SAPONINS ; NATURAL COMPOUND ; CYTOTOXICITY ; CELL ; CLASSIFICATION ; CHOLESTEROL ; DIGITONIN ; OSW-1 ; MEMBRANES ; BEARING
摘要Saponins are a type of compounds bearing a hydrophobic steroid/triterpenoid moiety and hydrophilic carbohydrate branches. The majority of the saponins demonstrate a broad range of prominent pharmacological activities. Nevertheless, many saponins also possess harmful hemolytic toxicity, which can cause the lysis of erythrocytes and thereby hamper their applications in medicine. As such, the organic synthesis of diverse saponins with versatile therapeutic effects and without hemolytic toxicity has gained considerable interests among medicinal/organic chemists. To date, the non-hemolytic saponins of interests have usually been designed by the traditional trial-and-error method or discovered by serendipity. It would be more efficient to develop an in silico method to rationally design promising saponins without hemolytic toxicity prior to the laborious organic synthesis, despite the fact that there is, so far, no computational model to predict the hemolytic toxicity of saponins. To this end, we manually curate 331 hemolytic and 121 non-hemolytic saponins from the literature for the first time and build the first machine-learning-based hemolytic toxicity classification model for the saponins, which provides encouraging performance with 95% confidence intervals for accuracy (0.906 +/- 0.009), precision (0.904 +/- 0.012), specificity (0.711 +/- 0.039), sensitivity (0.978 +/- 0.010), Fl-score (0.939 +/- 0.006), and Matthews correlation coefficient (0.756 +/- 0.025) on the test set by averaging over 19 different random data-partitioning schemes. Moreover, we have developed a free program called e-Hemolytic-Saponin for the automatic prediction and design of hemolytic/non-hemolytic saponins. To the best of our knowledge, we herein compile the first comprehensive saponin dataset focused on hemolytic toxicity, build the first informative model of hemolytic toxicity for the saponins, and implement the first convenient software that will enable organic/medicinal chemists to automatically predict and design the saponins of interests.
资助项目Natural Science Foundation of Zhejiang ProvinceNatural Science Foundation of Zhejiang Province [LY17B030007]; Wenzhou Medical University
出版者AMER CHEMICAL SOC
出版地WASHINGTON
ISSN0893-228X
EISSN1520-5010
卷号32期号:6页码:1014-1026
DOI10.1021/acs.chemrestox.8b00347
页数13
WOS类目Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Toxicology
WOS研究方向Pharmacology & Pharmacy ; Chemistry ; Toxicology
WOS记录号WOS:000472241800013
收录类别SCIE ; PUBMED ; SCOPUS
URL查看原文
PubMed ID30915843
SCOPUSEID2-s2.0-85064829867
通讯作者地址[Zheng, Suqing]School of Pharmaceutical Sciences,Wenzhou Medical University,Wenzhou, Zhejiang,325035,China
Scopus学科分类Toxicology
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/10344
专题药学院(分析测试中心)
药学院(分析测试中心)_生物有机与药物化学研究中心
通讯作者Zheng, Suqing
作者单位
1.School of Pharmaceutical Sciences,Wenzhou Medical University,Wenzhou, Zhejiang,325035,China;
2.Chemical Biology Research Center,Wenzhou Medical University,Wenzhou, Zhejiang,325035,China;
3.Genetic Screening Center,National Institute of Biological Sciences,Beijing,102206,China;
4.Tsinghua Institute of Multidisciplinary Biomedical Research,Tsinghua University,Beijing,100084,China;
5.Center of Chemical Biology,Guangzhou Institute of Biomedicine and Health,Chinese Academy of Sciences,Guangzhou, Guangdong,510530,China
第一作者单位药学院(分析测试中心);  生物有机与药物化学研究中心
通讯作者单位药学院(分析测试中心)
第一作者的第一单位药学院(分析测试中心)
推荐引用方式
GB/T 7714
Zheng, Suqing,Wang, Yibing,Liu, Hongmei,et al. Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods[J]. CHEMICAL RESEARCH IN TOXICOLOGY,2019,32(6):1014-1026.
APA Zheng, Suqing, Wang, Yibing, Liu, Hongmei, Chang, Wenping, Xu, Yong, & Lin, Fu. (2019). Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods. CHEMICAL RESEARCH IN TOXICOLOGY, 32(6), 1014-1026.
MLA Zheng, Suqing,et al."Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods".CHEMICAL RESEARCH IN TOXICOLOGY 32.6(2019):1014-1026.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zheng, Suqing]的文章
[Wang, Yibing]的文章
[Liu, Hongmei]的文章
百度学术
百度学术中相似的文章
[Zheng, Suqing]的文章
[Wang, Yibing]的文章
[Liu, Hongmei]的文章
必应学术
必应学术中相似的文章
[Zheng, Suqing]的文章
[Wang, Yibing]的文章
[Liu, Hongmei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。