科研成果详情

题名Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
作者
发表日期2017-12-06
发表期刊NEUROCOMPUTING   影响因子和分区
语种英语
原始文献类型Article
关键词Kemel extreme learning machine Parameter optimization Feature selection Improved moth-flame optimization Medical diagnosis
其他关键词PARTICLE SWARM OPTIMIZATION ; FEATURE-SELECTION ; ALGORITHM ; CLASSIFICATION ; MODEL ; PREDICTION
摘要This study proposes a novel learning scheme for the kernel extreme learning machine (KELM) based on the chaotic moth-flame optimization (CMFO) strategy. In the proposed scheme, CMFO simultaneously performs parameter optimization and feature selection. The proposed methodology is rigorously compared to several other competitive KELM models that are based on the original moth-flame optimization, particle swarm optimization, and genetic algorithms. The comparison is made using the medical diagnosis problems of Parkinson's disease and breast cancer. And the proposed method has successfully been applied to practical medical diagnosis cases. The experimental results demonstrate that, compared to the alternative methods, the proposed method offers significantly better classification performance and also obtains a smaller feature subset. Promisingly, the proposed CMFOFS-KELM, can serve as an effective and efficient computer aided tool for medical diagnosis in the field of medical decision making. (C) 2017 Elsevier B.V. All rights reserved.
资助项目National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC) [61303113, 61572226, 61373053]; Science and Technology Plan Project of Wenzhou of China [G20140048, H20110003, Y20160070]; Jilin Province Natural Science Foundation [20150101052JC]; Zhejiang Provincial Natural Science Foundation of ChinaNatural Science Foundation of Zhejiang Province [LY17F020012, LY16H300005, LY14F020035, LQ13G010007]; Guangdong Natural Science FoundationNational Natural Science Foundation of Guangdong Province [2016A030310072]; open project program of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University [93K172013K01]; Graduate Innovation Fund of Wenzhou University [3162016028]
出版者ELSEVIER
出版地AMSTERDAM
ISSN0925-2312
EISSN1872-8286
卷号267页码:69-84
DOI10.1016/j.neucom.2017.04.060
页数16
WOS类目Computer Science, Artificial Intelligence
WOS研究方向Computer Science
WOS记录号WOS:000409285400006
收录类别SCIE ; EI ; SCOPUS
EI入藏号20172103690524
EI主题词Medical problems
URL查看原文
SCOPUSEID2-s2.0-85019950299
ESI高被引论文2020-09 ; 2020-11 ; 2021-01 ; 2021-03 ; 2021-05 ; 2021-07 ; 2021-09 ; 2021-11 ; 2022-01 ; 2022-03 ; 2022-07 ; 2022-09 ; 2022-11 ; 2023-01 ; 2023-03 ; 2023-05 ; 2023-07 ; 2023-09 ; 2023-11 ; 2024-01 ; 2024-03 ; 2024-05 ; 2024-07 ; 2024-09 ; 2024-11
通讯作者地址[Chen, Huiling]College of Physics and Electronic Information Engineering,Wenzhou University,Wenzhou,325035,China
Scopus学科分类Computer Science Applications;Cognitive Neuroscience;Artificial Intelligence
TOP期刊TOP期刊
引用统计
被引频次:339[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/9469
专题附属第一医院_药学部药学部
第一临床医学院(信息与工程学院)、附属第一医院
通讯作者Chen, Huiling
作者单位
1.College of Physics and Electronic Information Engineering,Wenzhou University,Wenzhou,325035,China;
2.College of Computer Science and Technology,Jilin University,Changchun,130012,China;
3.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,China;
4.School of Digital Media,Shenzhen Institute of Information Technology,Shenzhen,518172,China;
5.Department of Pharmacy,The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325000,China
推荐引用方式
GB/T 7714
Wang, Mingjing,Chen, Huiling,Yang, Bo,et al. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses[J]. NEUROCOMPUTING,2017,267:69-84.
APA Wang, Mingjing., Chen, Huiling., Yang, Bo., Zhao, Xuehua., Hu, Lufeng., ... & Tong, Changfei. (2017). Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. NEUROCOMPUTING, 267, 69-84.
MLA Wang, Mingjing,et al."Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses".NEUROCOMPUTING 267(2017):69-84.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Mingjing]的文章
[Chen, Huiling]的文章
[Yang, Bo]的文章
百度学术
百度学术中相似的文章
[Wang, Mingjing]的文章
[Chen, Huiling]的文章
[Yang, Bo]的文章
必应学术
必应学术中相似的文章
[Wang, Mingjing]的文章
[Chen, Huiling]的文章
[Yang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。