题名 | Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses |
作者 | |
发表日期 | 2017-12-06 |
发表期刊 | NEUROCOMPUTING 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
关键词 | Kemel extreme learning machine Parameter optimization Feature selection Improved moth-flame optimization Medical diagnosis |
其他关键词 | PARTICLE SWARM OPTIMIZATION ; FEATURE-SELECTION ; ALGORITHM ; CLASSIFICATION ; MODEL ; PREDICTION |
摘要 | This study proposes a novel learning scheme for the kernel extreme learning machine (KELM) based on the chaotic moth-flame optimization (CMFO) strategy. In the proposed scheme, CMFO simultaneously performs parameter optimization and feature selection. The proposed methodology is rigorously compared to several other competitive KELM models that are based on the original moth-flame optimization, particle swarm optimization, and genetic algorithms. The comparison is made using the medical diagnosis problems of Parkinson's disease and breast cancer. And the proposed method has successfully been applied to practical medical diagnosis cases. The experimental results demonstrate that, compared to the alternative methods, the proposed method offers significantly better classification performance and also obtains a smaller feature subset. Promisingly, the proposed CMFOFS-KELM, can serve as an effective and efficient computer aided tool for medical diagnosis in the field of medical decision making. (C) 2017 Elsevier B.V. All rights reserved. |
资助项目 | National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC) [61303113, 61572226, 61373053]; Science and Technology Plan Project of Wenzhou of China [G20140048, H20110003, Y20160070]; Jilin Province Natural Science Foundation [20150101052JC]; Zhejiang Provincial Natural Science Foundation of ChinaNatural Science Foundation of Zhejiang Province [LY17F020012, LY16H300005, LY14F020035, LQ13G010007]; Guangdong Natural Science FoundationNational Natural Science Foundation of Guangdong Province [2016A030310072]; open project program of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University [93K172013K01]; Graduate Innovation Fund of Wenzhou University [3162016028] |
出版者 | ELSEVIER |
出版地 | AMSTERDAM |
ISSN | 0925-2312 |
EISSN | 1872-8286 |
卷号 | 267页码:69-84 |
DOI | 10.1016/j.neucom.2017.04.060 |
页数 | 16 |
WOS类目 | Computer Science, Artificial Intelligence |
WOS研究方向 | Computer Science |
WOS记录号 | WOS:000409285400006 |
收录类别 | SCIE ; EI ; SCOPUS |
EI入藏号 | 20172103690524 |
EI主题词 | Medical problems |
URL | 查看原文 |
SCOPUSEID | 2-s2.0-85019950299 |
ESI高被引论文 | 2020-09 ; 2020-11 ; 2021-01 ; 2021-03 ; 2021-05 ; 2021-07 ; 2021-09 ; 2021-11 ; 2022-01 ; 2022-03 ; 2022-07 ; 2022-09 ; 2022-11 ; 2023-01 ; 2023-03 ; 2023-05 ; 2023-07 ; 2023-09 ; 2023-11 ; 2024-01 ; 2024-03 ; 2024-05 ; 2024-07 ; 2024-09 ; 2024-11 |
通讯作者地址 | [Chen, Huiling]College of Physics and Electronic Information Engineering,Wenzhou University,Wenzhou,325035,China |
Scopus学科分类 | Computer Science Applications;Cognitive Neuroscience;Artificial Intelligence |
TOP期刊 | TOP期刊 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/9469 |
专题 | 附属第一医院 |
通讯作者 | Chen, Huiling |
作者单位 | 1.College of Physics and Electronic Information Engineering,Wenzhou University,Wenzhou,325035,China; 2.College of Computer Science and Technology,Jilin University,Changchun,130012,China; 3.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun,130012,China; 4.School of Digital Media,Shenzhen Institute of Information Technology,Shenzhen,518172,China; 5.Department of Pharmacy,The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325000,China |
推荐引用方式 GB/T 7714 | Wang, Mingjing,Chen, Huiling,Yang, Bo,et al. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses[J]. NEUROCOMPUTING,2017,267:69-84. |
APA | Wang, Mingjing., Chen, Huiling., Yang, Bo., Zhao, Xuehua., Hu, Lufeng., ... & Tong, Changfei. (2017). Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. NEUROCOMPUTING, 267, 69-84. |
MLA | Wang, Mingjing,et al."Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses".NEUROCOMPUTING 267(2017):69-84. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论