科研成果详情

题名Classification of Echocardiographic Standard Views Using a Hybrid Attention-based Approach
作者
发表日期2022
发表期刊INTELLIGENT AUTOMATION AND SOFT COMPUTING   影响因子和分区
语种英语
原始文献类型Article
关键词Artificial intelligence attention mechanism classification echocardiogram views
其他关键词INTELLIGENCE
摘要

The determination of the probe viewpoint forms an essential step in grams at the video level is complicated, and previous observations concluded that the most significant challenge lies in distinguishing among the various adjacent views. To this end, we propose an ECHO-Attention architecture consisting of two parts. We first design an ECHO-ACTION block, which efficiently encodes Spatio-temporal features, channel-wise features, and motion features. Then, we can insert this block into existing ResNet architectures, combined with a selfattention module to ensure its task-related focus, to form an effective ECHOAttention network. The experimental results are confirmed on a dataset of 2693 videos acquired from 267 patients that trained cardiologist has manually labeled. Our methods provide a comparable classification performance (overall accuracy of 94.81%) on the entire video sample and achieved significant improvements on the classification of anatomically similar views (precision 88.65% and 81.70% for parasternal short-axis apical view and parasternal short-axis papillary view on 30-frame clips, respectively).

资助项目Research Project of Wenzhou Polytechnic, China [WZY2021011]
出版者TECH SCIENCE PRESS
出版地HENDERSON
ISSN1079-8587
EISSN2326-005X
卷号33期号:2页码:1197-1215
DOI10.32604/iasc.2022.023555
页数19
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence
WOS研究方向Automation & Control Systems ; Computer Science
WOS记录号WOS:000753704500002
收录类别SCIE ; SCOPUS
URL查看原文
SCOPUSEID2-s2.0-85125890630
通讯作者地址[Ni, Xianda]Department of Ultrasonography,The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325003,China
Scopus学科分类Software;Theoretical Computer Science;Computational Theory and Mathematics;Artificial Intelligence
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/9259
专题附属第一医院
通讯作者Ni, Xianda
作者单位
1.School of Artificial Intelligence,Wenzhou Polytechnic,Wenzhou,325035,China;
2.Faculty of Information and Communication Technology,Universiti Teknikal Malaysia Melaka,Melaka,76100,Malaysia;
3.Shanghai Gen Cong Information Technology Co. Ltd.,Shanghai,201300,China;
4.Department of Ultrasonography,The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325003,China
通讯作者单位附属第一医院
推荐引用方式
GB/T 7714
Ye, Zi,Kumar, Yogan Jaya,Sing, Goh Ong,et al. Classification of Echocardiographic Standard Views Using a Hybrid Attention-based Approach[J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING,2022,33(2):1197-1215.
APA Ye, Zi, Kumar, Yogan Jaya, Sing, Goh Ong, Song, Fengyan, & Ni, Xianda. (2022). Classification of Echocardiographic Standard Views Using a Hybrid Attention-based Approach. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 33(2), 1197-1215.
MLA Ye, Zi,et al."Classification of Echocardiographic Standard Views Using a Hybrid Attention-based Approach".INTELLIGENT AUTOMATION AND SOFT COMPUTING 33.2(2022):1197-1215.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ye, Zi]的文章
[Kumar, Yogan Jaya]的文章
[Sing, Goh Ong]的文章
百度学术
百度学术中相似的文章
[Ye, Zi]的文章
[Kumar, Yogan Jaya]的文章
[Sing, Goh Ong]的文章
必应学术
必应学术中相似的文章
[Ye, Zi]的文章
[Kumar, Yogan Jaya]的文章
[Sing, Goh Ong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。