题名 | Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram |
作者 | |
发表日期 | 2018-09-01 |
发表期刊 | Neural networks : the official journal of the International Neural Network Society 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Journal article (JA) |
关键词 | Convolutional neural network Intracranial EEG Machine learning Scalp EEG Seizure prediction. |
摘要 | Seizure prediction has attracted growing attention as one of the most challenging predictive data analysis efforts to improve the life of patients with drug-resistant epilepsy and tonic seizures. Many outstanding studies have reported great results in providing sensible indirect (warning systems) or direct (interactive neural stimulation) control over refractory seizures, some of which achieved high performance. However, to achieve high sensitivity and a low false prediction rate, many of these studies relied on handcraft feature extraction and/or tailored feature extraction, which is performed for each patient independently. This approach, however, is not generalizable, and requires significant modifications for each new patient within a new dataset. In this article, we apply convolutional neural networks to different intracranial and scalp electroencephalogram (EEG) datasets and propose a generalized retrospective and patient-specific seizure prediction method. We use the short-time Fourier transform on 30-s EEG windows to extract information in both the frequency domain and the time domain. The algorithm automatically generates optimized features for each patient to best classify preictal and interictal segments. The method can be applied to any other patient from any dataset without the need for manual feature extraction. The proposed approach achieves sensitivity of 81.4%, 81.2%, and 75% and a false prediction rate of 0.06/h, 0.16/h, and 0.21/h on the Freiburg Hospital intracranial EEG dataset, the Boston Children's Hospital-MIT scalp EEG dataset, and the American Epilepsy Society Seizure Prediction Challenge dataset, respectively. Our prediction method is also statistically better than an unspecific random predictor for most of the patients in all three datasets. |
资助项目 | National Health and Medical Research Council[APP1065638]; |
出版者 | Elsevier Ltd |
ISSN | 0893-6080 |
EISSN | 1879-2782 |
卷号 | 105页码:104-111. |
DOI | 10.1016/j.neunet.2018.04.018 |
页数 | 35 |
收录类别 | PUBMED ; EI ; SCOPUS |
EI入藏号 | 20182105226377 |
EI主题词 | Electroencephalography |
URL | 查看原文 |
PubMed ID | 29793128 |
SCOPUSEID | 2-s2.0-85047158073 |
通讯作者地址 | [Kavehei, Omid]School of Electrical and Information Engineering,University of Sydney,Sydney,2006,Australia |
Scopus学科分类 | Cognitive Neuroscience;Artificial Intelligence |
TOP期刊 | TOP期刊 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/33454 |
专题 | 温州医科大学 |
通讯作者 | Kavehei, Omid |
作者单位 | 1.School of Electrical and Information Engineering,University of Sydney,Sydney,2006,Australia; 2.Nano-Neuro-inspired Research Laboratory,School of Electrical and Information Engineering,University of Sydney,Sydney,2006,Australia; 3.School of Engineering,Royal Melbourne Institute of Technology,Melbourne,3000,Australia; 4.Centre for Human Psychopharmacology,Swinburne University,Hawthorn,3122,Australia; 5.Neuroengineering Laboratory,Department of Electrical and Electronic Engineering,University of Melbourne,Parkville,3010,Australia; 6.Department of Medicine,St. Vincent's Hospital Melbourne,University of Melbourne,Parkville,3010,Australia; 7.Centre for Advanced Imaging,University of Queensland,St. Lucia,4072,Australia; 8.Optimization and Logistics Group,University of Adelaide,Adelaide,5005,Australia; 9.Nanochap Electronics and Wenzhou Medical University,268 Xueyuan West Rd.,Wenzhou,China |
推荐引用方式 GB/T 7714 | Truong, Nhan Duy,Nguyen, Anh Duy,Kuhlmann, Levin,et al. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram[J]. Neural networks : the official journal of the International Neural Network Society,2018,105:104-111.. |
APA | Truong, Nhan Duy., Nguyen, Anh Duy., Kuhlmann, Levin., Bonyadi, Mohammad Reza., Yang, Jiawei., ... & Kavehei, Omid. (2018). Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural networks : the official journal of the International Neural Network Society, 105, 104-111.. |
MLA | Truong, Nhan Duy,et al."Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram".Neural networks : the official journal of the International Neural Network Society 105(2018):104-111.. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论