题名 | Vision transformer introduces a new vitality to the classification of renal pathology |
作者 | |
发表日期 | 2024-12-01 |
发表期刊 | BMC Nephrology 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
关键词 | Artificial Intelligence Convolutional neural networks Renal pathology Vision transformers Whole-slide imaging |
摘要 | Recent advancements in computer vision within the field of artificial intelligence (AI) have made significant inroads into the medical domain. However, the application of AI for classifying renal pathology remains challenging due to the subtle variations in multiple renal pathological classifications. Vision Transformers (ViT), an adaptation of the Transformer model for image recognition, have demonstrated superior capabilities in capturing global features and providing greater explainability. In our study, we developed a ViT model using a diverse set of stained renal histopathology images to evaluate its effectiveness in classifying renal pathology. A total of 1861 whole slide images (WSI) stained with HE, MASSON, PAS, and PASM were collected from 635 patients. Renal tissue images were then extracted, tiled, and categorized into 14 classes on the basis of renal pathology. We employed the classic ViT model from the Timm library, utilizing images sized 384 × 384 pixels with 16 × 16 pixel patches, to train the classification model. A comparative analysis was conducted to evaluate the performance of the ViT model against traditional convolutional neural network (CNN) models. The results indicated that the ViT model demonstrated superior recognition ability (accuracy: 0.96–0.99). Furthermore, we visualized the identification process of the ViT models to investigate potentially significant pathological ultrastructures. Our study demonstrated that ViT models outperformed CNN models in accurately classifying renal pathology. Additionally, ViT models are able to focus on specific, significant structures within renal histopathology, which could be crucial for identifying novel and meaningful pathological features in the diagnosis and treatment of renal disease. |
资助项目 | Medical Health Science and Technology Project of Zhejiang Provincial Health Commission[2020377868];Wenzhou Science & Technology Bureau[Y20210150]; |
ISSN | 1471-2369 |
卷号 | 25期号:1 |
DOI | 10.1186/s12882-024-03800-x |
收录类别 | SCOPUS ; PUBMED |
URL | 查看原文 |
PubMed ID | 39385124 |
SCOPUSEID | 2-s2.0-85205982417 |
通讯作者地址 | [Pan, Min]Department of Nephrology,The Second Affiliated Hospital,Yuying Children’s Hospital of Wenzhou Medical University,109 Xueyuan Road, Zhejiang,Wenzhou,China |
Scopus学科分类 | Nephrology |
SCOPUS_ID | SCOPUS_ID:85205982417 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/220878 |
专题 | 附属第二医院 第一临床医学院(信息与工程学院)、附属第一医院 附属第一医院 附属第二医院_肾内科 附属第一医院_肾内科 |
通讯作者 | Pan, Min |
作者单位 | 1.Department of Nephrology,The Second Affiliated Hospital,Yuying Children’s Hospital of Wenzhou Medical University,109 Xueyuan Road, Zhejiang,Wenzhou,China; 2.Department of Nephrology,The First Affiliated Hospital of Wenzhou Medical University,Zhejiang,Wenzhou,China |
第一作者单位 | 附属第一医院; 第一临床医学院(信息与工程学院)、附属第一医院; 肾内科 |
通讯作者单位 | 附属第二医院; 肾内科 |
第一作者的第一单位 | 附属第一医院 |
推荐引用方式 GB/T 7714 | Zhang, Ji,Lu, Jia Dan,Chen, Bo,et al. Vision transformer introduces a new vitality to the classification of renal pathology[J]. BMC Nephrology,2024,25(1). |
APA | Zhang, Ji., Lu, Jia Dan., Chen, Bo., Pan, ShuFang., Jin, LingWei., ... & Pan, Min. (2024). Vision transformer introduces a new vitality to the classification of renal pathology. BMC Nephrology, 25(1). |
MLA | Zhang, Ji,et al."Vision transformer introduces a new vitality to the classification of renal pathology".BMC Nephrology 25.1(2024). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Ji]的文章 |
[Lu, Jia Dan]的文章 |
[Chen, Bo]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Ji]的文章 |
[Lu, Jia Dan]的文章 |
[Chen, Bo]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Ji]的文章 |
[Lu, Jia Dan]的文章 |
[Chen, Bo]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论