科研成果详情

题名Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study
作者
发表日期2024-08-14
发表期刊INTERNAL AND EMERGENCY MEDICINE   影响因子和分区
语种英语
原始文献类型Article ; Early Access
关键词Machine learning Artificial intelligence XGBoost Mortality prediction model Sepsis Septic shock
其他关键词INTERNATIONAL CONSENSUS DEFINITIONS ; LOGISTIC-REGRESSION
摘要Sepsis triggers a harmful immune response due to infection, causing high mortality. Predicting sepsis outcomes early is vital. Despite machine learning's (ML) use in medical research, local validation within the Medical Information Mart for Intensive Care IV (MIMIC-IV) database is lacking. We aimed to devise a prognostic model, leveraging MIMIC-IV data, to predict sepsis mortality and validate it in a Chinese teaching hospital. MIMIC-IV provided patient data, split into training and internal validation sets. Four ML models logistic regression (LR), support vector machine (SVM), deep neural networks (DNN), and extreme gradient boosting (XGBoost) were employed. Shapley additive interpretation offered early and interpretable mortality predictions. Area under the ROC curve (AUROC) gaged predictive performance. Results were cross verified in a Chinese teaching hospital. The study included 27,134 sepsis patients from MIMIC-IV and 487 from China. After comparing, 52 clinical indicators were selected for ML model development. All models exhibited excellent discriminative ability. XGBoost surpassed others, with AUROC of 0.873 internally and 0.844 externally. XGBoost outperformed other ML models (LR: 0.829; SVM: 0.830; DNN: 0.837) and clinical scores (Simplified Acute Physiology Score II: 0.728; Sequential Organ Failure Assessment: 0.728; Oxford Acute Severity of Illness Score: 0.738; Glasgow Coma Scale: 0.691). XGBoost's hospital mortality prediction achieved AUROC 0.873, sensitivity 0.818, accuracy 0.777, specificity 0.768, and F1 score 0.551. We crafted an interpretable model for sepsis death risk prediction. ML algorithms surpassed traditional scores for sepsis mortality forecast. Validation in a Chinese teaching hospital echoed these findings.
资助项目Key Research and Development Program of Zhejiang Province
出版者SPRINGER-VERLAG ITALIA SRL
ISSN1828-0447
EISSN1970-9366
DOI10.1007/s11739-024-03732-2
页数10
WOS类目Medicine, General & Internal
WOS研究方向General & Internal Medicine
WOS记录号WOS:001291546300002
收录类别SCIE ; PUBMED
URL查看原文
PubMed ID39141286
通讯作者地址[Lu, Zhongqiu]WenZhou Med Univ, Affiliated Hosp 1, Dept Emergency, Wenzhou 325000, Peoples R China. ; [Sun, Fangyuan]WenZhou Med Univ, Affiliated Hosp 1, Dept Comp Technol & Informat Management, Wenzhou 325000, Peoples R China.
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/217496
专题附属第一医院
附属第一医院_急诊科
附属第一医院_计算机技术与信息管理处
通讯作者Lu, Zhongqiu; Sun, Fangyuan
作者单位
1.WenZhou Med Univ, Affiliated Hosp 1, Dept Emergency, Wenzhou 325000, Peoples R China;
2.WenZhou Med Univ, Affiliated Hosp 1, Dept Comp Technol & Informat Management, Wenzhou 325000, Peoples R China
第一作者单位附属第一医院;  急诊科
通讯作者单位附属第一医院;  急诊科;  计算机技术与信息管理处
第一作者的第一单位附属第一医院
推荐引用方式
GB/T 7714
Wang, Yiping,Gao, Zhihong,Zhang, Yang,et al. Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study[J]. INTERNAL AND EMERGENCY MEDICINE,2024.
APA Wang, Yiping, Gao, Zhihong, Zhang, Yang, Lu, Zhongqiu, & Sun, Fangyuan. (2024). Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study. INTERNAL AND EMERGENCY MEDICINE.
MLA Wang, Yiping,et al."Early sepsis mortality prediction model based on interpretable machine learning approach: development and validation study".INTERNAL AND EMERGENCY MEDICINE (2024).

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yiping]的文章
[Gao, Zhihong]的文章
[Zhang, Yang]的文章
百度学术
百度学术中相似的文章
[Wang, Yiping]的文章
[Gao, Zhihong]的文章
[Zhang, Yang]的文章
必应学术
必应学术中相似的文章
[Wang, Yiping]的文章
[Gao, Zhihong]的文章
[Zhang, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。