题名 | Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies |
作者 | |
发表日期 | 2020-10 |
发表期刊 | FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
关键词 | Harris hawks optimization Optimization Nature-inspired algorithm Differential evolution Metaheuristic |
其他关键词 | PARTICLE SWARM OPTIMIZER ; ANT COLONY OPTIMIZATION ; GLOBAL OPTIMIZATION ; COMPUTATIONAL INTELLIGENCE ; FEATURE-SELECTION ; SEARCH ALGORITHM ; LOCAL SEARCH ; LEVY FLIGHTS ; DESIGN ; ADAPTATION |
摘要 | The first powerful variant of the Harris hawks optimization (HHO) is proposed in this work. HHO is a recently developed swarm-based stochastic algorithm that has previously shown excellent performance. In fact, the original HHO has features that can still be improved as it may experience convergence problems or may easily become trapped in local optima. To overcome these shortcomings of the original HHO, the first powerful variant of HHO integrates chaos strategy, topological multi-population strategy, and differential evolution (DE) strategy. For this, chaos mechanism is first introduced into the original algorithm to improve the exploitation propensities of HHO. The multi-population strategy with three mechanisms is embedded to augment the global search ability of the method. Finally, the DE mechanism is introduced into the HHO to enhance the quality of the solutions. Based on these well-regarded evolutionary mechanisms, we propose an enhanced DE-driven multi-population HHO (CMDHHO) algorithm. In this work, the proposed CMDHHO is compared with a range of other methods, including four original meta-heuristic algorithms, conventional HHO, twelve advanced algorithms based on IEEE CEC2017 benchmark functions, and IEEE CEC2011 real-world problems. Furthermore, the Friedman test and the non-parametric statistical Wilcoxon sign rank test are used to verify the significance of the results. The results of the experiments show that the three embedded mechanisms can effectively enhance the exploratory and exploitative traits of HHO. The time required for HHO to converge was substantially shortened. We suggest using the proposed CMDHHO as an effective tool to solve complex optimization problems. (C) 2020 Elsevier B.V. All rights reserved. |
资助项目 | Science and Technology Plan Project of Wenzhou, China [2018ZG012, 2018ZG016, ZG2017019]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [U1809209]; Graduate Scientific Research Foundation of Wenzhou University, China |
出版者 | ELSEVIER |
出版地 | AMSTERDAM |
ISSN | 0167-739X |
EISSN | 1872-7115 |
卷号 | 111页码:175-198 |
DOI | 10.1016/j.future.2020.04.008 |
页数 | 24 |
WOS类目 | Computer Science, Theory & Methods |
WOS研究方向 | Computer Science |
WOS记录号 | WOS:000541155100014 |
收录类别 | SCIE ; EI ; SCOPUS |
EI入藏号 | 20201908617286 |
EI主题词 | Evolutionary algorithms |
URL | 查看原文 |
SCOPUSEID | 2-s2.0-85084181851 |
ESI热点论文 | 2021-05 ; 2021-07 ; 2021-11 ; 2022-01 ; 2022-03 |
ESI高被引论文 | 2021-03 ; 2021-05 ; 2021-07 ; 2021-09 ; 2021-11 ; 2022-01 ; 2022-03 ; 2022-07 ; 2022-09 ; 2022-11 ; 2023-01 ; 2023-03 ; 2023-05 ; 2023-07 ; 2023-09 ; 2023-11 ; 2024-01 ; 2024-03 ; 2024-05 ; 2024-07 ; 2024-09 ; 2024-11 |
通讯作者地址 | [Chen, Huiling]Department of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou,325035,China |
Scopus学科分类 | Software;Hardware and Architecture;Computer Networks and Communications |
TOP期刊 | TOP期刊 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/19931 |
专题 | 附属第一医院 |
通讯作者 | Chen, Huiling |
作者单位 | 1.Department of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou,325035,China; 2.School of Surveying and Geospatial Engineering,College of Engineering,University of Tehran,Tehran,Iran; 3.Department of Computer Science,School of Computing,National University of Singapore,Singapore,Singapore; 4.Institute of Research and Development,Duy Tan University,Da Nang,550000,Viet Nam; 5.The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325000,China; 6.Faculty of Engineering and Information Technology,University of Technology Sydney,Ultimo,2007,Australia |
推荐引用方式 GB/T 7714 | Chen, Hao,Heidari, Ali Asghar,Chen, Huiling,et al. Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies[J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,2020,111:175-198. |
APA | Chen, Hao, Heidari, Ali Asghar, Chen, Huiling, Wang, Mingjing, Pan, Zhifang, & Gandomi, Amir H.. (2020). Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 111, 175-198. |
MLA | Chen, Hao,et al."Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies".FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 111(2020):175-198. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论