科研成果详情

题名Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies
作者
发表日期2020-10
发表期刊FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE   影响因子和分区
语种英语
原始文献类型Article
关键词Harris hawks optimization Optimization Nature-inspired algorithm Differential evolution Metaheuristic
其他关键词PARTICLE SWARM OPTIMIZER ; ANT COLONY OPTIMIZATION ; GLOBAL OPTIMIZATION ; COMPUTATIONAL INTELLIGENCE ; FEATURE-SELECTION ; SEARCH ALGORITHM ; LOCAL SEARCH ; LEVY FLIGHTS ; DESIGN ; ADAPTATION
摘要The first powerful variant of the Harris hawks optimization (HHO) is proposed in this work. HHO is a recently developed swarm-based stochastic algorithm that has previously shown excellent performance. In fact, the original HHO has features that can still be improved as it may experience convergence problems or may easily become trapped in local optima. To overcome these shortcomings of the original HHO, the first powerful variant of HHO integrates chaos strategy, topological multi-population strategy, and differential evolution (DE) strategy. For this, chaos mechanism is first introduced into the original algorithm to improve the exploitation propensities of HHO. The multi-population strategy with three mechanisms is embedded to augment the global search ability of the method. Finally, the DE mechanism is introduced into the HHO to enhance the quality of the solutions. Based on these well-regarded evolutionary mechanisms, we propose an enhanced DE-driven multi-population HHO (CMDHHO) algorithm. In this work, the proposed CMDHHO is compared with a range of other methods, including four original meta-heuristic algorithms, conventional HHO, twelve advanced algorithms based on IEEE CEC2017 benchmark functions, and IEEE CEC2011 real-world problems. Furthermore, the Friedman test and the non-parametric statistical Wilcoxon sign rank test are used to verify the significance of the results. The results of the experiments show that the three embedded mechanisms can effectively enhance the exploratory and exploitative traits of HHO. The time required for HHO to converge was substantially shortened. We suggest using the proposed CMDHHO as an effective tool to solve complex optimization problems. (C) 2020 Elsevier B.V. All rights reserved.
资助项目Science and Technology Plan Project of Wenzhou, China [2018ZG012, 2018ZG016, ZG2017019]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [U1809209]; Graduate Scientific Research Foundation of Wenzhou University, China
出版者ELSEVIER
出版地AMSTERDAM
ISSN0167-739X
EISSN1872-7115
卷号111页码:175-198
DOI10.1016/j.future.2020.04.008
页数24
WOS类目Computer Science, Theory & Methods
WOS研究方向Computer Science
WOS记录号WOS:000541155100014
收录类别SCIE ; EI ; SCOPUS
EI入藏号20201908617286
EI主题词Evolutionary algorithms
URL查看原文
SCOPUSEID2-s2.0-85084181851
ESI热点论文2021-05 ; 2021-07 ; 2021-11 ; 2022-01 ; 2022-03
ESI高被引论文2021-03 ; 2021-05 ; 2021-07 ; 2021-09 ; 2021-11 ; 2022-01 ; 2022-03 ; 2022-07 ; 2022-09 ; 2022-11 ; 2023-01 ; 2023-03 ; 2023-05 ; 2023-07 ; 2023-09 ; 2023-11 ; 2024-01 ; 2024-03 ; 2024-05 ; 2024-07 ; 2024-09 ; 2024-11
通讯作者地址[Chen, Huiling]Department of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou,325035,China
Scopus学科分类Software;Hardware and Architecture;Computer Networks and Communications
TOP期刊TOP期刊
引用统计
被引频次:208[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/19931
专题附属第一医院
通讯作者Chen, Huiling
作者单位
1.Department of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou,325035,China;
2.School of Surveying and Geospatial Engineering,College of Engineering,University of Tehran,Tehran,Iran;
3.Department of Computer Science,School of Computing,National University of Singapore,Singapore,Singapore;
4.Institute of Research and Development,Duy Tan University,Da Nang,550000,Viet Nam;
5.The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325000,China;
6.Faculty of Engineering and Information Technology,University of Technology Sydney,Ultimo,2007,Australia
推荐引用方式
GB/T 7714
Chen, Hao,Heidari, Ali Asghar,Chen, Huiling,et al. Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies[J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE,2020,111:175-198.
APA Chen, Hao, Heidari, Ali Asghar, Chen, Huiling, Wang, Mingjing, Pan, Zhifang, & Gandomi, Amir H.. (2020). Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 111, 175-198.
MLA Chen, Hao,et al."Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies".FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 111(2020):175-198.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Hao]的文章
[Heidari, Ali Asghar]的文章
[Chen, Huiling]的文章
百度学术
百度学术中相似的文章
[Chen, Hao]的文章
[Heidari, Ali Asghar]的文章
[Chen, Huiling]的文章
必应学术
必应学术中相似的文章
[Chen, Hao]的文章
[Heidari, Ali Asghar]的文章
[Chen, Huiling]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。