科研成果详情

题名Sparse-to-dense coarse-to-fine depth estimation for colonoscopy
作者
发表日期2023-06
发表期刊Computers in biology and medicine   影响因子和分区
语种英语
原始文献类型Journal Article
关键词Deep learning Depth estimation Endoscopic SLAM Medical metaverse
其他关键词INVASIVE SURGERY ; SLAM ; RECONSTRUCTION
摘要Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.
资助项目National Natural Science Foundation of China[62172353,62202137];Natural Science Foundation of Zhejiang Province[LQ22F030004];
出版者Elsevier Ltd
ISSN0010-4825
EISSN1879-0534
卷号160
DOI10.1016/j.compbiomed.2023.106983
页数10
WOS类目Biology ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Mathematical & Computational Biology
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Computer Science ; Engineering ; Mathematical & Computational Biology
WOS记录号WOS:001005401300001
收录类别PUBMED ; EI ; SCIE ; SCOPUS
在线发表日期2023-05
EI入藏号20232014092194
EI主题词Three dimensional computer graphics
EI分类号461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 717.1 Optical Communication Systems ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications
URL查看原文
PubMed ID37187133
SCOPUSEID2-s2.0-85159173713
通讯作者地址[Guo, Ran]Cyberspace Institute Advanced Technology,Guangzhou University,Guangzhou,510006,China
Scopus学科分类Health Informatics;Computer Science Applications
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/180511
专题附属第一医院
其他_附属苍南医院(苍南县人民医院)
通讯作者Guo, Ran
作者单位
1.School of Information Science and Technology,Hangzhou Normal University,Hangzhou,311121,China;
2.Haixi Institutes,Chinese Academy of Sciences Quanzhou Institute of Equipment Manufacturing,Quanzhou,362000,China;
3.School of Computer Science and Engineering,Tianjin University of Technology,Tianjin,300384,China;
4.Department of Digital Media Technology,Hangzhou Dianzi University,Hangzhou,310018,China;
5.Department of Colorectal Surgery,the First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325035,China;
6.Cyberspace Institute Advanced Technology,Guangzhou University,Guangzhou,510006,China;
7.College of Information Engineering,Yangzhou University,Yangzhou,225127,China;
8.Research and Development Center for E-Learning,Ministry of Education,Beijing,100039,China;
9.Department of Pediatrics,Cangnan Affiliated Hospital of Wenzhou Medical University,Wenzhou,325800,China
推荐引用方式
GB/T 7714
Liu, Ruyu,Liu, Zhengzhe,Lu, Jiaming,et al. Sparse-to-dense coarse-to-fine depth estimation for colonoscopy[J]. Computers in biology and medicine,2023,160.
APA Liu, Ruyu., Liu, Zhengzhe., Lu, Jiaming., Zhang, Guodao., Zuo, Zhigui., ... & Hua, Xiaozhen. (2023). Sparse-to-dense coarse-to-fine depth estimation for colonoscopy. Computers in biology and medicine, 160.
MLA Liu, Ruyu,et al."Sparse-to-dense coarse-to-fine depth estimation for colonoscopy".Computers in biology and medicine 160(2023).

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Ruyu]的文章
[Liu, Zhengzhe]的文章
[Lu, Jiaming]的文章
百度学术
百度学术中相似的文章
[Liu, Ruyu]的文章
[Liu, Zhengzhe]的文章
[Lu, Jiaming]的文章
必应学术
必应学术中相似的文章
[Liu, Ruyu]的文章
[Liu, Zhengzhe]的文章
[Lu, Jiaming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。