科研成果详情

题名Dual-Path and Multi-Scale Enhanced Attention Network for Retinal Diseases Classification Using Ultra-Wide-Field Images
作者
发表日期2023
发表期刊IEEE ACCESS   影响因子和分区
语种英语
原始文献类型Article
关键词Diseases Retina Lesions Feature extraction Deep learning Computer aided diagnosis Semantics Diseases classification UWF image multi-scale attention retina
其他关键词DIABETIC-RETINOPATHY ; DEEP
摘要Early computer-aided early diagnosis (CAD) based on retinal imaging is critical to the timely management and treatment planning of retina-related diseases. However, the inherent characteristics of retinal images and the complexity of their pathological patterns, such as low image contrast and different lesion sizes, restrict the performance of CAD systems. Recently, ultra-wide-field (UWF) retinal images have become a useful tool for disease detection due to the capability of capturing much broader view of retina (i.e., up to 200 degrees), in comparison with the most commonly used retinal fundus images (45 degrees). In this paper, we propose an attention-based multi-branch network for the diseases classification of four different subject groups. The proposed method consists of a multi-scale feature fusion module and a dual attention module. Specifically, small-scale lesions are identified using the features extracted from the multi-scale feature fusion module. To better explore the obtained features, the dual attention module with a global attention graph is incorporated to enable the network to recognize the salient objects of interest. Comprehensive validations on both private and public datasets were carried out to verify the effectiveness of the proposed model.
资助项目Ningbo Natural Science Foundation[20221JCGY010608,2022J143];National Natural Science Foundation Program of China[61906181,62103398];Zhejiang Provincial Natural Science Foundation[LQ21F010007,LQ23F010002,LR22F020008,LZ19F010001,LZ23F010002];Youth Innovation Promotion Association CAS[2021298];Ningbo University of Technology[2019B10033,2019B10061,2021Z054,2022KQ29];
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
ISSN2169-3536
EISSN2169-3536
卷号11页码:45405-45415
DOI10.1109/ACCESS.2023.3273613
页数11
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS记录号WOS:000988213400001
收录类别SCIE ; EI ; SCOPUS
EI入藏号20232114132801
EI主题词Computer aided diagnosis
EI分类号461.1 Biomedical Engineering ; 461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 901.2 Education ; 903.1 Information Sources and Analysis
URL查看原文
SCOPUSEID2-s2.0-85159752545
通讯作者地址[Zhang, Jiong]Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Cixi Institute of Biomedical Engineering,Ningbo,315399,China ; [Zhao, Yitian]Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Cixi Institute of Biomedical Engineering,Ningbo,315399,China
Scopus学科分类Computer Science (all);Materials Science (all);Engineering (all)
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/180038
专题其他_附属宁波市眼科医院
通讯作者Zhang, Jiong; Zhao, Yitian
作者单位
1.Zhejiang University of Technology,School of Mechanical and Engineering,Hangzhou,310014,China;
2.Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Cixi Institute of Biomedical Engineering,Ningbo,315399,China;
3.Sun Yat-sen University,School of Biomedical Engineering,Shenzhen,510275,China;
4.The Affiliated Ningbo Eye Hospital of Wenzhou Medical University,Ningbo,325035,China
推荐引用方式
GB/T 7714
Chen, Fangsheng,Ma, Shaodong,Hao, Jinkui,et al. Dual-Path and Multi-Scale Enhanced Attention Network for Retinal Diseases Classification Using Ultra-Wide-Field Images[J]. IEEE ACCESS,2023,11:45405-45415.
APA Chen, Fangsheng., Ma, Shaodong., Hao, Jinkui., Liu, Mengting., Gu, Yuanyuan., ... & Zhao, Yitian. (2023). Dual-Path and Multi-Scale Enhanced Attention Network for Retinal Diseases Classification Using Ultra-Wide-Field Images. IEEE ACCESS, 11, 45405-45415.
MLA Chen, Fangsheng,et al."Dual-Path and Multi-Scale Enhanced Attention Network for Retinal Diseases Classification Using Ultra-Wide-Field Images".IEEE ACCESS 11(2023):45405-45415.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Fangsheng]的文章
[Ma, Shaodong]的文章
[Hao, Jinkui]的文章
百度学术
百度学术中相似的文章
[Chen, Fangsheng]的文章
[Ma, Shaodong]的文章
[Hao, Jinkui]的文章
必应学术
必应学术中相似的文章
[Chen, Fangsheng]的文章
[Ma, Shaodong]的文章
[Hao, Jinkui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。