科研成果详情

题名Non-rigid Image Registration by Minimizing Weighted Residual Complexity
作者
发表日期2018-12-31
发表期刊CURRENT MEDICAL IMAGING   影响因子和分区
语种英语
原始文献类型Article
关键词Weighting function local entropy residual complexity intensity distortion image registration WRC
其他关键词MR ; CT
摘要Background: Non-rigid registration of medical images with intensity distortions is a difficult problem due to the change in pixel intensity. It is caused by contrast agent or intensity bias field. Methods: In some cases, this problem can be solved using Residual Complexity (RC) method. However, relative modification of parameter in residual complexity would result in completely different experimental effect. Another drawback is sensitivity to noise. To handle this problem, a new intensity-based similarity measure, Weighted Residual Complexity (WRC) has been proposed for effective medical image registration in this paper. Specifically, the local entropy image of two images is computed to be aligned respectively. Then, a weighting function using a function of the local entropy difference is modeled. The weighting function is used to weight the residual image in residual complexity adaptively. The residual image is defined as the difference between reference image and warped floating image. Results: The weighting function assigns smaller weight to residual image if the corresponding pixel value is larger in local entropy difference. The proposed technique was applied to simulative and real medical images. The contrast experiments were made with mutual information, diffeomorphic demons and residual complexity. Conclusion: Also, the analysis of experimental results was made qualitatively and quantitatively, which indicates that this new approach gives a better performance than diffeomorphic demons, mutual information and residual complexity.
资助项目Zhejiang Provincial Natural Science foundation of ChinaNatural Science Foundation of Zhejiang Province [LQ17H180005, LQ16F030010]; Foundation of Science and Technology Bureau of Wenzhou [G20140046]; National Nature Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11504274]; Guangdong Natural Science Foundation of ChinaNational Natural Science Foundation of Guangdong Province [2014A030313316, 2016A030313574]; Wenzhou Science & Technology Bureau [Y20150086]
出版者BENTHAM SCIENCE PUBL LTD
出版地SHARJAH
ISSN1573-4056
EISSN1875-6603
卷号14期号:2页码:334-346
DOI10.2174/1573405613666170703122534
页数13
WOS类目Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000425530100018
收录类别SCIE ; SCOPUS
URL查看原文
SCOPUSEID2-s2.0-85047143933
通讯作者地址[Zhang, Juan]School of Biomedical Engineering,WenZhou Medical University,ZheJiang,325035,China
Scopus学科分类Radiology, Nuclear Medicine and Imaging
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/16807
专题眼视光学院(生物医学工程学院)、附属眼视光医院
仁济学院
仁济学院_眼视光、生物医学工程学部
通讯作者Zhang, Juan
作者单位
1.School of Biomedical Engineering,WenZhou Medical University,ZheJiang,325035,China;
2.WenZhou Medical University RenJi College,ZheJiang,325035,China;
3.School of Biomedical Engineering,Southern Medical University,Guangzhou,510515,China
第一作者单位眼视光、生物医学工程学部
通讯作者单位眼视光、生物医学工程学部
第一作者的第一单位眼视光、生物医学工程学部
推荐引用方式
GB/T 7714
Zhang, Juan,Zhao, Shuo-Feng,Jiang, Yun-Feng,et al. Non-rigid Image Registration by Minimizing Weighted Residual Complexity[J]. CURRENT MEDICAL IMAGING,2018,14(2):334-346.
APA Zhang, Juan., Zhao, Shuo-Feng., Jiang, Yun-Feng., Pan, Zhi-Fang., Lu, Zhen-Tai., ... & Chen, Wu-Fan. (2018). Non-rigid Image Registration by Minimizing Weighted Residual Complexity. CURRENT MEDICAL IMAGING, 14(2), 334-346.
MLA Zhang, Juan,et al."Non-rigid Image Registration by Minimizing Weighted Residual Complexity".CURRENT MEDICAL IMAGING 14.2(2018):334-346.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Juan]的文章
[Zhao, Shuo-Feng]的文章
[Jiang, Yun-Feng]的文章
百度学术
百度学术中相似的文章
[Zhang, Juan]的文章
[Zhao, Shuo-Feng]的文章
[Jiang, Yun-Feng]的文章
必应学术
必应学术中相似的文章
[Zhang, Juan]的文章
[Zhao, Shuo-Feng]的文章
[Jiang, Yun-Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。