题名 | The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer |
作者 | |
发表日期 | 2022-08 |
发表期刊 | JOURNAL OF DIGITAL IMAGING 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article ; Early Access |
关键词 | Automatic segmentation U-net Radiomics Ultrasound images |
其他关键词 | VARIABILITY ; TARGET |
摘要 | Ultrasound (US) imaging has been recognized and widely used as a screening and diagnostic imaging modality for cervical cancer all over the world. However, few studies have investigated the U-net-based automatic segmentation models for cervical cancer on US images and investigated the effects of automatic segmentations on radiomics features. A total of 1102 transvaginal US images from 796 cervical cancer patients were collected and randomly divided into training (800), validation (100) and test sets (202), respectively, in this study. Four U-net models (U-net, U-net with ResNet, context encoder network (CE-net), and Attention U-net) were adapted to segment the target of cervical cancer automatically on these US images. Radiomics features were extracted and evaluated from both manually and automatically segmented area. The mean Dice similarity coefficient (DSC) of U-net, Attention U-net, CE-net, and U-net with ResNet were 0.88, 0.89, 0.88, and 0.90, respectively. The average Pearson coefficients for the evaluation of the reliability of US image-based radiomics were 0.94, 0.96, 0.94, and 0.95 for U-net, U-net with ResNet, Attention U-net, and CE-net, respectively, in their comparison with manual segmentation. The reproducibility of the radiomics parameters evaluated by intraclass correlation coefficients (ICC) showed robustness of automatic segmentation with an average ICC coefficient of 0.99. In conclusion, high accuracy of U-net-based automatic segmentations was achieved in delineating the target area of cervical cancer US images. It is feasible and reliable for further radiomics studies with features extracted from automatic segmented target areas. |
资助项目 | Wenzhou Municipal Science and Technology Bureau [Y20190183]; Zhejiang Engineering Research Center of Intelligent Medicine [2016E10011]; National Natural Science Foundation of China [11675122] |
出版者 | SPRINGER |
出版地 | NEW YORK |
ISSN | 0897-1889 |
EISSN | 1618-727X |
卷号 | 35期号:4页码:983-992 |
DOI | 10.1007/s10278-022-00620-z |
页数 | 10 |
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging |
WOS研究方向 | Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000775768000001 |
收录类别 | SCIE ; EI ; SCOPUS ; PUBMED |
EI入藏号 | 20221411913890 |
EI主题词 | Image segmentation |
EI分类号 | 461.6 Medicine and Pharmacology ; 753.1 Ultrasonic Waves |
URL | 查看原文 |
PubMed ID | 35355160 |
SCOPUSEID | 2-s2.0-85127380013 |
通讯作者地址 | [Xie, Congying]Department of Radiotherapy Center,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China ; [Jin, Xiance]Department of Radiotherapy Center,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China |
Scopus学科分类 | Radiological and Ultrasound Technology;Radiology, Nuclear Medicine and Imaging;Computer Science Applications |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/148624 |
专题 | 第一临床医学院(信息与工程学院)、附属第一医院 基础医学院(机能实验教学中心) 附属第二医院 附属第一医院_超声影像科 第二临床医学院、附属第二医院、育英儿童医院 第一临床医学院(信息与工程学院)、附属第一医院_妇产科学_妇科 |
通讯作者 | Xie, Congying; Jin, Xiance |
作者单位 | 1.Department of Medical Engineering,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China; 2.Department of Gynecology,Shanghai First Maternal and Infant Hospital,Tongji University School of Medicine,Shanghai,200126,China; 3.Department of Gynecology,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China; 4.Department of Ultrasound Imaging,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China; 5.Department of Radiotherapy Center,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China; 6.Department of Radiation and Medical Oncology,Wenzhou Medical University Second Affiliated Hospital,Wenzhou,325000,China; 7.School of Basic Medical Science,Wenzhou Medical University,Wenzhou,325000,China |
第一作者单位 | 附属第一医院 |
通讯作者单位 | 附属第一医院 |
第一作者的第一单位 | 附属第一医院 |
推荐引用方式 GB/T 7714 | Jin, Juebin,Zhu, Haiyan,Teng, Yingyan,et al. The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer[J]. JOURNAL OF DIGITAL IMAGING,2022,35(4):983-992. |
APA | Jin, Juebin, Zhu, Haiyan, Teng, Yingyan, Ai, Yao, Xie, Congying, & Jin, Xiance. (2022). The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer. JOURNAL OF DIGITAL IMAGING, 35(4), 983-992. |
MLA | Jin, Juebin,et al."The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer".JOURNAL OF DIGITAL IMAGING 35.4(2022):983-992. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论