科研成果详情

题名The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer
作者
发表日期2022-08
发表期刊JOURNAL OF DIGITAL IMAGING   影响因子和分区
语种英语
原始文献类型Article ; Early Access
关键词Automatic segmentation U-net Radiomics Ultrasound images
其他关键词VARIABILITY ; TARGET
摘要Ultrasound (US) imaging has been recognized and widely used as a screening and diagnostic imaging modality for cervical cancer all over the world. However, few studies have investigated the U-net-based automatic segmentation models for cervical cancer on US images and investigated the effects of automatic segmentations on radiomics features. A total of 1102 transvaginal US images from 796 cervical cancer patients were collected and randomly divided into training (800), validation (100) and test sets (202), respectively, in this study. Four U-net models (U-net, U-net with ResNet, context encoder network (CE-net), and Attention U-net) were adapted to segment the target of cervical cancer automatically on these US images. Radiomics features were extracted and evaluated from both manually and automatically segmented area. The mean Dice similarity coefficient (DSC) of U-net, Attention U-net, CE-net, and U-net with ResNet were 0.88, 0.89, 0.88, and 0.90, respectively. The average Pearson coefficients for the evaluation of the reliability of US image-based radiomics were 0.94, 0.96, 0.94, and 0.95 for U-net, U-net with ResNet, Attention U-net, and CE-net, respectively, in their comparison with manual segmentation. The reproducibility of the radiomics parameters evaluated by intraclass correlation coefficients (ICC) showed robustness of automatic segmentation with an average ICC coefficient of 0.99. In conclusion, high accuracy of U-net-based automatic segmentations was achieved in delineating the target area of cervical cancer US images. It is feasible and reliable for further radiomics studies with features extracted from automatic segmented target areas.
资助项目Wenzhou Municipal Science and Technology Bureau [Y20190183]; Zhejiang Engineering Research Center of Intelligent Medicine [2016E10011]; National Natural Science Foundation of China [11675122]
出版者SPRINGER
出版地NEW YORK
ISSN0897-1889
EISSN1618-727X
卷号35期号:4页码:983-992
DOI10.1007/s10278-022-00620-z
页数10
WOS类目Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000775768000001
收录类别SCIE ; EI ; SCOPUS ; PUBMED
EI入藏号20221411913890
EI主题词Image segmentation
EI分类号461.6 Medicine and Pharmacology ; 753.1 Ultrasonic Waves
URL查看原文
PubMed ID35355160
SCOPUSEID2-s2.0-85127380013
通讯作者地址[Xie, Congying]Department of Radiotherapy Center,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China ; [Jin, Xiance]Department of Radiotherapy Center,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China
Scopus学科分类Radiological and Ultrasound Technology;Radiology, Nuclear Medicine and Imaging;Computer Science Applications
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/148624
专题第一临床医学院(信息与工程学院)、附属第一医院
基础医学院(机能实验教学中心)
附属第二医院
附属第一医院_超声影像科
第二临床医学院、附属第二医院、育英儿童医院
第一临床医学院(信息与工程学院)、附属第一医院_妇产科学_妇科
通讯作者Xie, Congying; Jin, Xiance
作者单位
1.Department of Medical Engineering,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China;
2.Department of Gynecology,Shanghai First Maternal and Infant Hospital,Tongji University School of Medicine,Shanghai,200126,China;
3.Department of Gynecology,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China;
4.Department of Ultrasound Imaging,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China;
5.Department of Radiotherapy Center,Wenzhou Medical University First Affiliated Hospital,Shangcai Village,Wenzhou,325000,China;
6.Department of Radiation and Medical Oncology,Wenzhou Medical University Second Affiliated Hospital,Wenzhou,325000,China;
7.School of Basic Medical Science,Wenzhou Medical University,Wenzhou,325000,China
第一作者单位附属第一医院
通讯作者单位附属第一医院
第一作者的第一单位附属第一医院
推荐引用方式
GB/T 7714
Jin, Juebin,Zhu, Haiyan,Teng, Yingyan,et al. The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer[J]. JOURNAL OF DIGITAL IMAGING,2022,35(4):983-992.
APA Jin, Juebin, Zhu, Haiyan, Teng, Yingyan, Ai, Yao, Xie, Congying, & Jin, Xiance. (2022). The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer. JOURNAL OF DIGITAL IMAGING, 35(4), 983-992.
MLA Jin, Juebin,et al."The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer".JOURNAL OF DIGITAL IMAGING 35.4(2022):983-992.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jin, Juebin]的文章
[Zhu, Haiyan]的文章
[Teng, Yingyan]的文章
百度学术
百度学术中相似的文章
[Jin, Juebin]的文章
[Zhu, Haiyan]的文章
[Teng, Yingyan]的文章
必应学术
必应学术中相似的文章
[Jin, Juebin]的文章
[Zhu, Haiyan]的文章
[Teng, Yingyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。