科研成果详情

题名间歇性低氧肺动脉高压大鼠apelin-APJ系统的变化及意义
其他题名Changes and role of Apelin-APJ in the Pathogenesis of Pulmonary Hypertension induced by Intermittent Hypoxia in rats
作者
学位类型硕士
导师陈少贤
答辩日期2007-05-30
学位授予单位温州医科大学
学位专业内科学
关键词apelin APJ 间歇性低氧 肺动脉高压 大鼠
摘要目的:通过研究间歇性低氧肺动脉高压大鼠血浆、肺、右心室组织apelin-36和其受体APJ蛋白水平、基因表达及其在组织分布情况,探讨apelin-APJ系统在间歇性低氧所致的肺动脉高压病理过程中的变化及其可能起的作用和意义。方法:(1)间歇性低氧肺动脉高压动物模型的复制:清洁级雄性SD大鼠50只,随机分成5组(n=10),即:正常对照组(C)、正常空气舱对照2周组(2C)、正常空气舱对照4周组(4C)、间歇性低氧舱2周组(2H)和间歇性低氧舱4周组(4H)。间歇性低氧舱内,实验期间向舱内循环充入氮气和氧气,每次循环为90s,舱内最高氧浓度维持在21%左右,最低氧浓度维持在9±1.5%。正常空气舱对照组置于间歇低氧舱相似的舱内,持续通入空气,使O2浓度21%左右。正常空气舱对照组和间歇低氧舱组舱内饲养每天8h,每周6天。正常对照组大鼠置于室内,其他饲养条件与正常空气舱对照组及间歇低氧舱组相同。动物饲养到规定时间后,戊巴比妥钠(35mg/kg,i.p.)麻醉,右心导管法测量平均肺动脉压(mPAP),右心室收缩末期压及右心室室内压最大变化速率,左颈总动脉插管测平均颈动脉压(mCAP),分别称取右心室游离壁(RV)和左心室加室间隔(LV+S)重量。以mPAP、mCAP和RV/(LV+S)作为模型建立与否的判断指标。(2)放射免疫(RIA)法测定血浆、右心室和肺组织匀浆apelin-36的蛋白含量。(3)逆转录-多聚酶链反应(RT-PCR)半定量检测右心室和肺组织apelin-36 mRNA及APJ mRNA基因水平。(4)免疫组织化学方法,半定量并定位检测心肺组织中apelin-36及APJ的含量及组织内分布。结果: (1)间歇性低氧肺动脉高压大鼠模型的检测:mPAP:2H组较2C组高18.71% (P0.05),各组间mCAP及(LV+S)/WT均无显著性统计学差异(P>0.05)。(2) RIA结果:各组间血浆及右心室组织匀浆apelin-36蛋白含量无统计学差异(P>0.05),肺组织匀浆apelin-36含量4H组较C组高84%(P0.05)。APJ mRNA:4H组较C组高78.72%(P0.05),APJ:2H组较C组高25.26%(P<0.05),4H组较C组高67.82%(P<0.05)。结论: 间歇性低氧能使大鼠肺动脉压力升高,该模型可以部分复制临床SAHS引起肺动脉高压的发病过程;间歇性低氧所导致的肺动脉高压较持续缺氧肺动脉高压,程度较轻,对右心室结构影响较小;间歇性低氧形成肺动脉高压过程中,机体肺组织apelin蛋白合成增加,右心室组织APJ受体表达增多,提示apelin-APJ系统的蛋白合成、基因表达及其代谢可能参与了间歇性肺动脉高压的发生发展;Apelin – APJ在间歇性低氧肺动脉高压模型中对机体保护作用、肺血管外膜apelin-APJ高表达其具体意义有待进一步研究发现。
其他摘要Aim: To invstigate the change and probable role of Apelin-APJ in the pathogenesis of pulmonary hypertension induced by intermittent hypoxia in rats. Methods: (1) To set up rattish pathological model of intermittent hypoxic pulmonary hypertension: fifty male Sprague-Dawley(SD) rats (200-300g) were randomly divided into five groups, normal control group(C), intermittent hypoxic hypertension 2-week(2H), 4-week (2H) group and normal air chamber 2-week(2C), 4-week(4C) control group(n=10). The rats of the 2H and 4H groups were placed in an isobaric intermittent hypoxic chamber, where O2 content was fluctuated. And the highest content of O2 content was maintained about 21%, and the lowest content fluctuated between 9±1.5%. The rats of the 2C and 4C groups were placed in an chamber, where O2 content was maintained in 21%, Other condition is equal to H groups, raise the rats for 2 or 4 weeks (8 hours/day, 6 days/week). The rats of C group were housed in room air (21% oxygen). On the day of study, the animals were weighed and anesthetized with pentobarbital sodium(35mg/kg, i.p.). Then, a catheter was placed through the right external jugular vein in the pulmonary artery to monitor mean pulmonary arterial pressure (mPAP)、right ventricular end-systolic pressure (RVSP) and variance speed of intraventricular pressure (RV±dp/dt). The mean carotid arterial pressure (mCAP) and the weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) were also measured. It was assessed of the pathological model with the mPAP, mCAP and RV/(LV+S). (2) The contents of apelin-36 was respectively measured with radioimmunoassay in the plasma, RV and lung homogenate. (3) Apelin-36 and APJ mRNA expressed in the RV and lung tissue were studied with reverse transcription-polymerase chain reaction (RT-PCR). (4) The contents and cellular distribution of apelin-36 and APJ in the RV and lung tissue by immunohistochemistry. Results: (1) The mPAPs of 2H group was higher 18.71% than 2C groups (P0.05) among each groups. (2) The levels of apelin-36 in the plasma and RV homogenate were no difference of contents among each groups (P>0.05). But, in pulmonary homogenate, the levels of apelin-36 in 4H group was higher 84% (P<0.05) than C group, and 144% (P<0.01) than 2H group. (3) The result of RT-PCR: in lung homogenate, the expression of apelin-36 mRNA of 4H group was down-regulated, and less 14% (P<0.05) than C group, 21% (P<0.01) than 2H group; The C group of pulmonary expression of APJ mRNA was less 31.25% (P<0.05) compared with 2H, and 39.58% (P<0.05) compared with 4H. And there’s no significant difference among each group of the expression of apelin mRNA in right ventricle homogenate. However, APJ mRNA was significantly up-regulated in 4H group, both P values of 4H group comparing to C group and 2H group were less than 0.05 with LSD analysis.(3) In the immunohistochemistry study, apelin-36 and APJ was mainly present in endothelial and vascular smooth muscle cells from small pulmonary vessels in sections from rat lung, and also present in bronchial epithelial cells. The expression of apelin-36 of 4H is highest, higher 24.86% (P<0.05) than C group, and 30.32% (P<0.01) than 2H. While APJ of C group is lowest, lower 40.98%(P<0.05) than 2H group, and 61.30% (P<0.05) than 4H group. In the rat heart, we detected apelin-36 and APJ mainly present in cardiomyocytes, and lower levels in endothelial and vascular smooth muscle cells from small intramyocardial vessels. In cardiomyocytes apelin-36、APJ showed a transversal striated distribution pattern associated with the cell surface membrane. And there is no significant difference among each group in the right ventricle sections of the apelin-36.While the expression APJ in right ventricular was up-regulated. And 2H was higher 25.26% (P<0.05) than C group, 4H was higher 67.82% (P<0.05) than C group. Conclusion: Intermittent hypoxic can raise the pulmonary arterial pressure of rats, and it can partly copy the pulmonary arterial hypertension caused by SAHS. The raise of pulmonary arterial pressure is lower compared with that of continued hypoxic. In the intermittent hypoxic pulmonary arterial hypertension rats, the contents of apelin-36 and the gene expression of apelin-36 mRNA and APJ mRNA were influence with the intermittent hypoxic. It supposed that the apelin-APJ might take part in the pathogenesis of the intermittent hypoxic pulmonary hypertension
语种中文
学号20041025
发布年限2010-05-27
毕业论文分类号0R05
原始专题第一临床学院
学位论文研究方向肺动脉高压
参考文献参考文献 1 Duran J,Esnaola S,Rubio R,et al. Obstructive Sleep Apnea-hypopnea and Related Clinical Features in a Population-based Sample of Subjects Aged 30 to 70 Yu. Am J Respir Crit Care Med 2001, 163 (3Ptl):685-689. 2 尚修建,刘来新,罗卫平,等. 阻塞性睡眠呼吸暂停综合征及其危害. 中华慢病杂志 2005,4(2):312-314 3 Fletcher EC,Lesske J,Qian W,et al. Repetitive, Episodic Hypoxia Causes Diurnal Elevation of Blood Pressure in Rats. Hypertension 1992, 19 (6Pt1):555-561. 4 Bao G,Met reveli N,Li R,et al. Blood Pressure Response to Chronic Episodic Hypoxia: Role of the Sympathetic Nervous System. J Appl Physiol 1997, 83 (1):95-101. 5 Fletcher EC,Bao G,Li R. Renin Activity and Blood Pressure in Response to Chronic Episodic Hypoxia. Hypertension 1999, 34(2):309-314. 6 Kanagy NL,Walker BR,Nelin LD. Role of Endothelin in Intermittent Hypoxia-induced Hypertension. Hypertension 2001,37(2Pt2):511-515. 7 高志,武宗义,肖高辉. 阻塞性睡眠呼吸暂停合征肺动脉高压相关因素. 临床肺科杂志 2005, 10(4):523-525 8 Sajkov D. Daytime Pulmonary Hemodynamics in Patients with Obstructive Sleep Apnea without Lung Disease. American Journal of Respiratory and Critical Care Medicine 1999, 159: 1518~1526 9 Rubin LJ. Executive Summary: Diagnosis and Management of Pulmonary Artery Hypertension: ACCP Evidence-Based Clinical Practice Practice Guideline. Chest. 2004, 126 (1Suppl):4S-6S 10 陆慰萱,季颖群. 肺动脉高压的研究进展. 中华内科杂志 2004,43(11):874-877 11 Badesch DB,Abman SH,Ahearn GS,et al. Medical Therpy for Pulmonary Arterial Hypertension: ACCP Evidence-Based Clinical Practice Guidelines. Chest 2004, 126 (1Suppl):35S-62S 12 Farber HW,Loscalzo J. Pulmonary Arterial Hypertension. N Engl J Med 2004,351 (16): 1655-1665 13 Tatemoto K,Hosoya M,Habata Y,et al. Isolation and Characterization of a Novel Endogenous Peptide Ligand for the Human APJ Receptor. Biochem Biophy Res commun. 1998,251(2):471-476. 14 Temoto K,Takayama K,Zou MX,et al. The Novel Peptide Apelin Lowers Blood Pressure Via a Nitric Oxide-dependent Mechanism. Regul Pept. 2001,99:87-92. 15 Hendricks JC,Kline LR,Kovalski RJ,et al. The English Bulldog:a Natural Model of Seep-disordered Breathing. J Appl Physiol. 1987,63 (4):1344-1350 16 柳广南,陈学远,张建全,等. 一种天然的阻塞性睡眠呼吸暂停低通气综合征动物模型- 陆川猪. 中华内科杂志. 2004, 43 (3):224-225 17 Tatemoto K,Takayama K,Zou MX,et al. The Novel Peptide Apelin Lowers Blood Pressure via a Nitric Oxide-dependent Mechanism. Regul Pept. 2001,99:87-92. 18 O′Carroll AM,Selby TL,Palkovits M,et al. Distribution of mRNA Encoding B78P Apj, the Rat Homologue of the Human APJ Receptor , and its Endogenous Ligand Apelin in Brain and Peripheral Tissues. Biochim Biophys Acta. 2000,492 (1):72-80. 19 Kawamata Y,Habata Y,Fukusumi S,et al. Molecular Properties of Apelin::Tissue Distribution and Receptor Binding. Biochim Biophys Acta. 2001,1538 (223):162-171. 20 Zou MX,Liu HY,Haraguchi Y,et al. Apelin Peptides Block the Entry of Human Immunodeficiency Virus (HIV). FEBS Lett. 2000,473 (1):15-18. 21 张宝红,杜军保,唐朝枢,等. Apelin -新发现的孤儿G蛋白偶联受体APJ的天然配体. 国外医学&#8226;生理、病理科学与临床分册 2003,23 (6):591-593 22 吴小脉,龚永生,高钰琪,等. Apelin的心血管效应. 国外医学&#8226;生理、病理科学与临床分册 2005,25(2):123-126 23 龚永生,范小芳,吴小脉,等. 低氧性肺动脉高压大鼠肺组织apelin-APJ系统的变化. 中国微循环 2006,10(2):119-122 24 项中一,李玉萍,陈少贤,等. 肺动脉高压患者血浆Ape lin的变化及意义. 放射免疫学杂志 2006,19(4):262-264 25 Matthias J,Kleinza,Jeremy N,et al. Immunocytochemical Localisation of the Apelin Receptor, APJ, to Human Cardiomyocytes, Vascular Smooth Muscle and Endothelial Cells. Davenporta Regulatory Peptides 2005,126:233– 240 26 龚永生,范小芳,高钰琪,等. 缺氧致大鼠心肺组织中apelin的表达降低. 第三军医大学学报 2006,28(11):1188-1190 27 BerryMF,Pirolli TJ,JayasankarV,et al. Apelin has in Vivo Inotropic Effects on Normal and Failing Hearts. Circulation. 2004,110:II187~II193 28 Katugampola SD,Maguire JJ,Matthewson SR,et al. Apelin-13 is a Novel Radioligand for Localizing the APJ Orphan Receptor in Human and Rat Tissues with Evidence for a Vasoconstrictor Role in Man. Br J Pharmacol 2001,132(6):1255-126
全文文件名20041025卢瑶2007内科学.pdf|20041025卢瑶2007内科学.pdf
文献类型学位论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/121118
专题温州医科大学
作者单位
溫州医科大学第一临床学院
推荐引用方式
GB/T 7714
卢瑶. 间歇性低氧肺动脉高压大鼠apelin-APJ系统的变化及意义[D]. 温州医科大学,2007.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[卢瑶]的文章
百度学术
百度学术中相似的文章
[卢瑶]的文章
必应学术
必应学术中相似的文章
[卢瑶]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。