科研成果详情

题名胎盘Leptin、Igf-1基因启动子区的甲基化状态与巨大儿的关联性研究
其他题名Relationship between methylation status of placental Leptin and Igf-1 promoter and macrosomia from normal pregnancy
作者
学位类型硕士
导师闫洪涛
答辩日期2015-05-24
学位授予单位温州医科大学
学位专业遗传学
关键词巨大儿 LEP 胎盘 Igf-1 甲基化 妊娠
摘要目的:探讨正常妊娠状态下,巨大儿胎盘瘦素(Leptin,LEP)、胰岛素样生长因-1(Igf-1)基因启动子的甲基化状态和巨大儿之间的关系,为研究巨大胎儿的发病机制及其临床防治措施提供依据。资料与方法:研究对象 研究人群来自2011年4月~2012年3月在温州医学院附属第二医院产科分娩的101例新生儿及母亲。入选标准:正常妊娠、单胎足月分娩、糖耐量试验正常、所产新生儿无先天畸形的产妇。胎儿娩出后立即称重,并对其发育状况进行评价,分为巨大儿组(新生儿体重≥4000g,n=48)和正常体重儿组(2500g≤新生儿出生体重<4000g,n=53)。方法(1)胎盘标本的采集和处理:胎盘娩出后,无菌采集胎盘滋养层组织1cm3,剪碎放入5倍体积组织的RNAlater中, 4孵化过夜,随后转入-80保存,待DNA和RNA的提取。(2)临床资料的收集:采用自行设计的调查表,收集产妇和新生儿相关资料。主要内容包括:1)新生儿发育情况;2)产前检查情况;3)孕期营养状况;4)分娩情况;5)新生儿父母亲的身高、体重、吸烟、饮酒等资料。(3)甲基化和表达的的测定:采用Sequenom MassARRAY Methylation平台检测LEP和Igf-1 基因启动子的甲基化状态;实时荧光定量PCR(Real-time PCR)检测基因LEP和Igf-1 的mRNA表达。(4)统计分析:问卷调查资料和实验室数据统一录入EpiData数据库。采用SPSS 17.0统计软件进行统计描述与统计推断。统计方法主要采用方差分析、独立样本t检验、秩和检验等。结果(1)人口统计学资料显示:两组中母亲年龄、妊娠周期,婴儿的性别等主要人口学特征均未见统计学差别;巨大儿组母亲的孕前体重略高(p=0.049);巨大儿的分娩更倾向于采用剖宫产手术(p=0.003)。(2)胎盘LEP的甲基化和mRNA水平在两组中的比较:巨大儿组的LEP基因启动子区的平均甲基化水平(35.6%) 高于正常体重儿儿组(34.6%),但没有统计学意义(p = 0.538),且单个CpG二核苷酸的甲基化程度和mRNA的表达在两组中也无差异。当按照胎次分层时,初产妇中巨大儿LEP启动子区的个别CG片段的甲基化水平高于正常组,并且有统计学意义。当孕周为39周时,LEP启动子区的个别CG位点和启动子的平均甲基化水平在两组中有统计学差异,且巨大儿组高于正常体重儿组,但这些甲基化的变异没有影响mRNA的表达。(3)胎盘Igf-1的甲基化和mRNA水平在两组中的比较:巨大儿组Igf-1 P1启动子区的平均甲基化水平高于正常体重儿组(36.1% vs. 33.9%),但没有统计学意义(p = 0.453), 且单个的CG位点的甲基化水平比较没有统计学差异。Igf-1 mRNA的表达在总体和分层分析中都未发现统计学差异。结论:在巨大儿发生过程中,胎盘LEP的甲基化可以受到母体环境或特定孕龄的影响,而胎盘Igf-1 P1启动子区的甲基化状态和巨大儿的发生无关。
其他摘要OBJECTIVE To investigate whether the DNA methylation status and mRNA expression level of the LEP gene and Igf-1 gene is altered in the human placenta of macrosomic infants with normal pregnancy, and providing evidence for the study of the pathogenesis of fetal macrosomia and its clinical PreventionMaterial and Methods:Source A total of 49 neonates, who were born with high birth weight (≥ 4000 g), or a condition called macrosomia, on normal pregnancy, and 52 neonates with normal birth weight (control group) (2500 g < birth weight < 4000 g) were recruited from the Second Affiliated Hospital of Wenzhou Medical College, China. Case seleetion criteria: maternal health, were singleton on pregnancy, had no history of hypertension, gestational diabetes (including normal glucose tolerance tests during the first and third trimesters of pregnancy). No fetal distress, congenital malformations. Methods (1)Placental sampling and handlingPlacenta biopsies were obtained from the mothers considered at term after delivery. The biopsies, approximately 1 cm3, were obtained evenly from the center of the cotyledons across the placenta, were cut into small pieces, transferred to 5 volumes of the RNAlater solution (Ambion, Austin, Texas), and incubated at 4 °C overnight, freezing at –80 °C until nucleic acid extraction.(2)Clinical data collecting Collecting the medical information of neonates and mothers using the self designed questionnaire, including: 1)the development of neonates ; 2)the condition of prenatal examination; 3)the nutritional condition during pregnancy; 4)delivery situation; 5)the height, weight, smoking and drinking status of father and mother 1.2.3 Measurement of DNA methylation and mRNA expressionThe DNA methylation status of LEP and Igf-1 promoter and the gene expression levels of the placenta were determined using the Sequenom Mass ARRAY and real-time PCR, respectively.(3)Statistical analysisThe data from the questionnaire were imported to the EpiData。The data was statistics bysofeware SPSS 17.0, including using One-way ANOVA, unpaired t-test, Mann-Whitney rank sum test.Results(1)Sample characteristics:The distributions of gestational age, infant gender and maternal age used were not significantly different between the groups. As expected, Women with higher body weights prior to pregnancy tend to gave birth to macrosomic babies (p =0.049), through cesarean section (p=0.003). (2)Comparation of methylation and mRNA level of placental LEP between the two groups:No significant difference of mean or individual CpG site DNA methylation in LEP gene promoter was observed between the macrosomia and normal weight babies (mean level:35.6% vs.34.6 %, p=0.535 ), as well as the LEP mRNA expression level. in nullparity women, we have shown that LEP gene DNA methylation status is altered at several CpG sites in promoter between macrosomia and normal weight babies( p<0.05). And also the mean and individual CpG sites methylation level of macrosomia is significant higher than control group when the gestational age is 39 wks(mean level: n=14/17, 38% vs.32%, p=0.016), both differences do not contribute to the expression level of LEP in placenta. (3)Comparation of methylation and mRNA level of placental Igf-1 between the two groups: compared to the normal birth weight group, the methylation mean level of Igf-1 P1 prompter have a higher trend in the macrosomia, but without statistical significance (36.1% vs. 33.9%) nor the individual CG sites. The Igf-1 mRNA level shows no difference between the two groups even after stratified analysis. Conclusion: The methylation status of the placental LEP promoter in macrosomia from normal pregnancy can be altered within a specific gestational period or by certain maternal conditions, but placental LEP expression is not affected. The placental Igf-1 has no contribution to macrosomia from normal pregnancy
语种中文
学号2010010005
发布年限2010-05-27
毕业论文分类号0R03
原始专题环境与公共卫生学院
学位论文研究方向表观遗传学
参考文献1. Ornoy A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol 2011, 32(2):205-212. 2. Bao C, Zhou Y, Jiang L et al. Reasons for the increasing incidence of macrosomia in Harbin, China. BJOG 2011, 118(1):93-98. 3. Boney CM, Verma A, Tucker R et al. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005, 115(3):e290-296. 4. Ng SK, Olog A, Spinks AB et al. Risk factors and obstetric complications of large for gestational age births with adjustments for community effects: results from a new cohort study. BMC Public Health 2010, 10:460. 5. Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 2004, 56(3):311-317. 6. Hales CN, Barker DJ, Clark PM et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991, 303(6809):1019-1022. 7. Rich-Edwards JW, Stampfer MJ, Manson JE et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 1997, 315(7105):396-400. 8. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007, 27:363-388. 9. Gluckman PD, Hanson MA, Cooper C et al. Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine 2008, 359(1):61-73. 10. Giapros V, Papadimitriou P, Challa A et al. The effect of intrauterine growth retardation on renal function in the first two months of life. Nephrology Dialysis Transplantation 2006, 22(1):96-103. 11. Hediger ML, Overpeck MD, McGlynn A et al. Growth and fatness at three to six years of age of children born small- or large-for-gestational age. Pediatrics 1999, 104(3):e33. 12. Ross JA. High Birthweight and Cancer: Evidence and Implications. Cancer Epidemiology Biomarkers & Prevention 2006, 15(1):1-2. 13. Godfrey KM. The role of the placenta in fetal programming-a review. Placenta 2002, 23 Suppl A:S20-27. 14. Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review). Mol Med Report 2012, 5(4):883-889. 15. Maccani MA, Marsit CJ. Epigenetics in the placenta. Am J Reprod Immunol 2009, 62(2):78-89. 16. Nelissen EC, van Montfoort AP, Dumoulin JC et al. Epigenetics and the placenta. Hum Reprod Update 2011, 17(3):397-417. 17. 薛京伦主编. 表观遗传学—原理、技术与实践[J]. 上海科学技术出版社, 2006. 18. Deng G-F, Qin J-M, Sun X-S et al. Promoter Analysis of Mouse Scn3a Gene and Regulation of the Promoter Activity by GC Box and CpG Methylation. Journal of Molecular Neuroscience 2011, 44(2):115-121. 19. Fukao T, Zhang G, Matsuo N et al. CpG islands around exon 1 in the succinyl-CoA: 3-ketoacid CoA transferase (SCOT) gene are hypomethylated even in human and mouse hepatic tissues where SCOT gene expression is completely suppressed. Mol Med Report 2010, 3(2):355. 20. Christou H, Connors JM, Ziotopoulou M et al. Cord blood leptin and insulin-like growth factor levels are independent predictors of fetal growth. Journal of Clinical Endocrinology & Metabolism 2001, 86(2):935-938. 21. Milagro FI, Campion J, Garcia-Diaz DF et al. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 2009, 65(1):1-9. 22. Melzner I, Scott V, Dorsch K et al. Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. J Biol Chem 2002, 277(47):45420-45427. 23. Tobi EW, Heijmans BT, Kremer D et al. DNA methylation ofIGF2,GNASAS,INSIGFandLEPand being born small for gestational age. Epigenetics 2011, 6(2):171-176. 24. Fu Q, Yu X, Callaway CW et al. Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J 2009, 23(8):2438-2449. 25. Chia DJ, Young JJ, Mertens AR et al. Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Mol Endocrinol 2010, 24(4):779-789. 26. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 2008, 3(6):1101-1108. 27. Marchi M, Lisi S, Curcio M et al. Human leptin tissue distribution, but not weight loss-dependent change in expression, is associated with methylation of its promoter. Epigenetics 2011, 6(10):1198-1206. 28. D'Ippolito S, Tersigni C, Scambia G et al. Adipokines, an adipose tissue and placental product with biological functions during pregnancy. Biofactors 2012, 38(1):14-23. 29. Bouchard L, Thibault S, Guay SP et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care 2010, 33(11):2436-2441. 30. Tobi EW, Lumey LH, Talens RP et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009, 18(21):4046-4053. 31. Jousse C, Parry L, Lambert-Langlais S et al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J 2011, 25(9):3271-3278. 32. Hogg K, Blair JD, von Dadelszen P et al. Hypomethylation of the LEP gene in placenta and elevated maternal leptin concentration in early onset pre-eclampsia. Mol Cell Endocrinol 2013, 367(1-2):64-73. 33. Linnemann K, Malek A, Sager R et al. Leptin Production and Release in the Dually in VitroPerfused Human Placenta. Journal of Clinical Endocrinology & Metabolism 2000, 85(11):4298-4301. 34. Lepercq J, Challier JC, Guerre-Millo M et al. Prenatal leptin production: evidence that fetal adipose tissue produces leptin. Journal of Clinical Endocrinology & Metabolism 2001, 86(6):2409-2413. 35. Hauguel-de Mouzon S, Lepercq J, Catalano P. The known and unknown of leptin in pregnancy. Am J Obstet Gynecol 2006, 194(6):1537-1545. 36. Newbern D, Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011, 18(6):409-416. 37. Lepercq J, Cauzac M, Lahlou N et al. Overexpression of placental leptin in diabetic pregnancy: a critical role for insulin. Diabetes 1998, 47(5):847-850. 38. Hoegh AM, Borup R, Nielsen FC et al. Gene expression profiling of placentas affected by pre-eclampsia. J Biomed Biotechnol 2010, 2010:787545. 39. Zhang Y, Proenca R, Maffei M et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372(6505):425-432. 40. Kieffer EC, Tabaei BP, Carman WJ et al. The influence of maternal weight and glucose tolerance on infant birthweight in Latino mother-infant pairs. American Journal of Public Health 2006, 96(12):2201. 41. Al-Farsi YM, Brooks DR, Werler MM et al. Effect of high parity on occurrence of some fetal growth indices: a cohort study. Int J Womens Health 2012, 4:289-293. 42. Khong TY, Adema ED, Erwich JJHM. On an Anatomical Basis for the Increase in Birth Weight in Second and Subsequent Born Children. Placenta 2003, 24(4):348-353. 43. Jak&#353;i&#263; J, Mikulandra F, Peri&#353;a M et al. Effect of insulin and insulin-like growth factor I on fetal macrosomia in healthy women. Collegium antropologicum 2001, 25(2):535-543. 44. Lauszus FF, Klebe JG, Flyvbjerg A. Macrosomia associated with maternal serum insulin-like growth factor-I and-II in diabetic pregnancy. Obstetrics & Gynecology 2001, 97(5):734-741. 45. Thompson RF, Fazzari MJ, Niu H et al. Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. Journal of Biological Chemistry 2010, 285(20):15111-15118. 46. Sanchez C, Oskowitz A, Pochampally RR. Epigenetic reprogramming of IGF1 and leptin genes by serum deprivation in multipotential mesenchymal stromal cells. Stem Cells 2009, 27(2):375-382. 47. DAVENPORT ML, CLEMMONS DR, MILES MV et al. Regulation of Serum Insulin-Like Growth Factor-I (IGF I) and IGF Binding Proteins during Rat Pregnancy. Endocrinology 1990, 127(3):1278-1286. 48. Grissa O, Yessoufou A, Mrisak I et al. Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus : possible interactions with macrosomia. BMC Pregnancy Childbirth 2010, 10(1):7. 49. Grissa O, Yessoufou A, Mrisak I et al. Growth factor concentrations and their placental mRNA expression are modulated in gestational diabetes mellitus: possible interactions with macrosomia. BMC pregnancy and childbirth 2010, 10(1):7. 50. Demendi C, Borzsonyi B, Nagy ZB et al. Gene expression patterns of insulin-like growth factor 1, 2 (IGF-1, IGF-2) and insulin-like growth factor binding protein 3 (IGFBP-3) in human placenta from preterm deliveries: influence of additional factors. Eur J Obstet Gynecol Reprod Biol 2012, 160(1):40-44. 51. Holt RI. Fetal programming of the growth hormone–insulin-like growth factor axis. Trends in Endocrinology & Metabolism 2002, 13(9):392-397. 52. Verhaeghe J, Van Bree R, Van Herck E et al. C-peptide, insulin-like growth factors I and II, and insulin-like growth factor binding protein-1 in umbilical cord serum: correlations with birth weight. Am J Obstet Gynecol 1993, 169:89-89. 53. 林英, 王卫, 刘晓红 et al. 新生儿瘦素水平动态变化与胰岛素样生长因子—I, 胰岛素及生长激素关系研究. 中国妇幼保健 2007, 22(16):2242-2244. 54. Randhawa R, Cohen P. The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab 2005, 86(1-2):84-90. 55. Hiden U, Glitzner E, Hartmann M et al. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J Anat 2009, 215(1):60-68. 56. Houseknecht K, Portocarrero C, Ji S et al. Growth hormone regulates leptin gene expression in bovine adipose tissue: correlation with adipose IGF-1 expression. Journal of Endocrinology 2000, 164(1):51-57
全文文件名2010010005胥新芸2013遗传学.pdf|2010010005胥新芸2013遗传学.pdf
文献类型学位论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/117161
专题温州医科大学
作者单位
公共卫生与管理学院
推荐引用方式
GB/T 7714
胥新芸. 胎盘Leptin、Igf-1基因启动子区的甲基化状态与巨大儿的关联性研究[D]. 温州医科大学,2015.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[胥新芸]的文章
百度学术
百度学术中相似的文章
[胥新芸]的文章
必应学术
必应学术中相似的文章
[胥新芸]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。