科研成果详情

题名MPMNet: Modal Prior Mutual-Support Network for Age-Related Macular Degeneration Classification
作者
会议录名称SPRINGER INTERNATIONAL PUBLISHING AG   影响因子和分区
语种英语
原始文献类型Proceedings Paper
会议名称27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
会议日期OCT 06-10, 2024
会议地点Palmeraie Conf Ctr, Marrakesh, MOROCCO
关键词Age-related macular degeneration CNV OCT OCTA Multi-modal
摘要Early screening and classification of Age-related Macular Degeneration (AMD) are crucial for precise clinical treatment. Currently, most automated methods focus solely on dry and wet AMD classification. However, the classification of wet AMD into more explicit type 1 choroidal neovascularization (CNV) and type 2 CNV has rarely been explored, despite its significance in intravitreal injection. Furthermore, previous methods predominantly utilized single-modal images for distinguishing AMD types, while multi-modal images can provide a more comprehensive representation of pathological changes for accurate diagnosis. In this paper, we propose a Modal Prior Mutual-support Network (MPMNet), which for the first time combines OCTA images and OCT sequences for the classification of normal, dry AMD, type 1 CNV, and type 2 CNV. Specifically, we first employ a multi-branch encoder to extract modality-specific features. A novel modal prior mutual-support mechanism is proposed, which determines the primary and auxiliary modalities based on the sensitivity of different modalities to lesions and makes joint decisions. In this mechanism, a distillation loss is employed to enforce the consistency between single-modal decisions and joint decisions. It can facilitate networks to focus on specific pathological information within individual modalities. Furthermore, we propose a mutual information-guided feature dynamic adjustment strategy. This strategy adjusts the channel weights of the two modalities by computing the mutual information between OCTA and OCT, thereby mitigating the influence of low-quality modal features on the network's robustness. Experiments on private and public datasets have demonstrated that the proposed MPMNet outperforms existing state-of-the-art methods.
出版地CHAM
EISSN1611-3349
页码733-742
DOI10.1007/978-3-031-72378-0_68
页数10
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001342205800068
收录类别CPCI-S
发表日期2024
通讯作者地址[Zhao, Yitian;Zhang, Jiong]Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Theranost Mat & Technol, Ningbo, Peoples R China.
引用统计
文献类型会议论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/223553
专题其他_温州医科大学慈溪生物医药研究院
通讯作者Zhao, Yitian; Zhang, Jiong
作者单位
1.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Theranost Mat & Technol, Ningbo, Peoples R China;
2.Wenzhou Med Univ, Cixi Biomed Res Inst, Ningbo, Peoples R China;
3.Ningbo Univ Technol, Sch Cyber Sci & Engn, Ningbo, Peoples R China;
4.Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore;
5.Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen, Peoples R China;
6.Nanjing Univ, Sch Biomed Engn, Nanjing, Peoples R China
第一作者单位其他_温州医科大学慈溪生物医药研究院
推荐引用方式
GB/T 7714
Li, Yuanyuan,Hao, Huaying,Zhang, Dan,et al. MPMNet: Modal Prior Mutual-Support Network for Age-Related Macular Degeneration Classification[C]. CHAM,2024:733-742.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Yuanyuan]的文章
[Hao, Huaying]的文章
[Zhang, Dan]的文章
百度学术
百度学术中相似的文章
[Li, Yuanyuan]的文章
[Hao, Huaying]的文章
[Zhang, Dan]的文章
必应学术
必应学术中相似的文章
[Li, Yuanyuan]的文章
[Hao, Huaying]的文章
[Zhang, Dan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。