题名 | Multi-threshold image segmentation using new strategies enhanced whale optimization for lupus nephritis pathological images☆ |
作者 | |
发表日期 | 2024-09 |
发表期刊 | Displays 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
关键词 | Whale optimization algorithm Magnetic liquid climbing Image segmentation Topological mapping Non-local means 2D histogram |
其他关键词 | PARTICLE SWARM OPTIMIZATION ; GLOBAL OPTIMIZATION ; DIFFERENTIAL EVOLUTION ; INSPIRED OPTIMIZER ; ALGORITHM ; INTELLIGENCE ; NETWORK ; DESIGN ; TESTS |
摘要 | Lupus Nephritis (LN) has been considered as the most prevalent form of systemic lupus erythematosus. Medical imaging plays an important role in diagnosing and treating LN, which can help doctors accurately assess the extent and extent of the lesion. However, relying solely on visual observation and judgment can introduce subjectivity and errors, especially for complex pathological images. Image segmentation techniques are used to differentiate various tissues and structures in medical images to assist doctors in diagnosis. Multi-threshold Image Segmentation (MIS) has gained widespread recognition for its direct and practical application. However, existing MIS methods still have some issues. Therefore, this study combines non-local means, 2D histogram, and 2D Renyi's entropy to improve the performance of MIS methods. Additionally, this study introduces an improved variant of the Whale Optimization Algorithm (GTMWOA) to optimize the aforementioned MIS methods and reduce algorithm complexity. The GTMWOA fusions Gaussian Exploration (GE), Topology Mapping (TM), and Magnetic Liquid Climbing (MLC). The GE effectively amplifies the algorithm's proficiency in local exploration and quickens the convergence rate. The TM facilitates the algorithm in escaping local optima, while the MLC mechanism emulates the physical phenomenon of MLC, refining the algorithm's convergence precision. This study conducted an extensive series of tests using the IEEE CEC 2017 benchmark functions to demonstrate the superior performance of GTMWOA in addressing intricate optimization problems. Furthermore, this study executed an experiment using Berkeley images and LN images to verify the superiority of GTMWOA in MIS. The ultimate outcomes of the MIS experiments substantiate the algorithm's advanced capabilities and robustness in handling complex optimization problems. |
资助项目 | Natural Science Foundation of Zhejiang Province [LZ22F020005]; National Natural Science Foundation of China [62076185, 62301367] |
出版者 | ELSEVIER |
ISSN | 0141-9382 |
EISSN | 1872-7387 |
卷号 | 84 |
DOI | 10.1016/j.displa.2024.102799 |
页数 | 42 |
WOS类目 | Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Optics |
WOS研究方向 | Computer Science ; Engineering ; Instruments & Instrumentation ; Optics |
WOS记录号 | WOS:001295592800001 |
收录类别 | SCIE ; SCOPUS ; EI |
EI入藏号 | 20243316877346 |
EI主题词 | Image segmentation |
EI分类号 | 405.3 Surveying ; 461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 746 Imaging Techniques ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory ; 921.5 Optimization Techniques |
URL | 查看原文 |
SCOPUSEID | 2-s2.0-85200950722 |
通讯作者地址 | [Chen, Huiling]Wenzhou Univ, Key Lab Intelligent Informat Safety & Emergency Zh, Wenzhou 325035, Peoples R China. ; [Chen, Xiaowei;Sun, Li]Wenzhou Med Univ, Affiliated Hosp 1, Dept Rheumatol & Immunol, Wenzhou 325000, Peoples R China. |
Scopus学科分类 | Human-Computer Interaction;Hardware and Architecture;Electrical and Electronic Engineering |
SCOPUS_ID | SCOPUS_ID:85200950722 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/217357 |
专题 | 附属第一医院 附属第一医院_风湿免疫科 |
通讯作者 | Chen, Huiling; Chen, Xiaowei; Sun, Li |
作者单位 | 1.Wenzhou Univ, Key Lab Intelligent Informat Safety & Emergency Zh, Wenzhou 325035, Peoples R China; 2.Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran; 3.Sichuan Univ, Coll Comp Sci, Chengdu 610065, Sichuan, Peoples R China; 4.Wenzhou Med Univ, Affiliated Hosp 1, Dept Rheumatol & Immunol, Wenzhou 325000, Peoples R China |
通讯作者单位 | 附属第一医院; 风湿免疫科 |
推荐引用方式 GB/T 7714 | Shi, Jinge,Chen, Yi,Wang, Chaofan,et al. Multi-threshold image segmentation using new strategies enhanced whale optimization for lupus nephritis pathological images☆[J]. Displays,2024,84. |
APA | Shi, Jinge., Chen, Yi., Wang, Chaofan., Heidari, Ali Asghar., Liu, Lei., ... & Sun, Li. (2024). Multi-threshold image segmentation using new strategies enhanced whale optimization for lupus nephritis pathological images☆. Displays, 84. |
MLA | Shi, Jinge,et al."Multi-threshold image segmentation using new strategies enhanced whale optimization for lupus nephritis pathological images☆".Displays 84(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论