题名 | Interpretable machine learning models for predicting clinical pregnancies associated with surgical sperm retrieval from testes of different etiologies: a retrospective study |
作者 | |
发表日期 | 2024-07-29 |
发表期刊 | BMC Urology 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
关键词 | Surgical sperm retrieval Clinical pregnancy Machine learning SHapley Additive exPlanation |
其他关键词 | MALE-INFERTILITY ; PREVALENCE ; INJECTION |
摘要 | BackgroundThe relationship between surgical sperm retrieval of different etiologies and clinical pregnancy is unclear. We aimed to develop a robust and interpretable machine learning (ML) model for predicting clinical pregnancy using the SHapley Additive exPlanation (SHAP) association of surgical sperm retrieval from testes of different etiologies.MethodsA total of 345 infertile couples who underwent intracytoplasmic sperm injection (ICSI) treatment with surgical sperm retrieval due to different etiologies from February 2020 to March 2023 at the reproductive center were retrospectively analyzed. The six machine learning (ML) models were used to predict the clinical pregnancy of ICSI. After evaluating the performance characteristics of the six ML models, the Extreme Gradient Boosting model (XGBoost) was selected as the best model, and SHAP was utilized to interpret the XGBoost model for predicting clinical pregnancies and to reveal the decision-making process of the model.ResultsCombining the area under the receiver operating characteristic curve (AUROC), accuracy, precision, recall, F1 score, brier score, and the area under the precision-recall (P-R) curve (AP), the XGBoost model has the best performance (AUROC: 0.858, 95% confidence interval (CI): 0.778-0.936, accuracy: 79.71%, brier score: 0.151). The global summary plot of SHAP values shows that the female age is the most important feature influencing the model output. The SHAP plot showed that younger age in females, bigger testicular volume (TV), non-tobacco use, higher anti-m & uuml;llerian hormone (AMH), lower follicle-stimulating hormone (FSH) in females, lower FSH in males, the temporary ejaculatory disorders (TED) group, and not the non-obstructive azoospermia (NOA) group all resulted in an increased probability of clinical pregnancy.ConclusionsThe XGBoost model predicts clinical pregnancies associated with testicular sperm retrieval of different etiologies with high accuracy, reliability, and robustness. It can provide clinical counseling decisions for patients with surgical sperm retrieval of various etiologies. |
资助项目 | Wenzhou Basic Scientific Research Project of China |
出版者 | BMC |
ISSN | 1471-2490 |
卷号 | 24期号:1 |
DOI | 10.1186/s12894-024-01537-1 |
页数 | 12 |
WOS类目 | Urology & Nephrology |
WOS研究方向 | Urology & Nephrology |
WOS记录号 | WOS:001279438800005 |
收录类别 | SCIE ; SCOPUS ; PUBMED |
URL | 查看原文 |
PubMed ID | 39075422 |
SCOPUSEID | 2-s2.0-85200008244 |
通讯作者地址 | [Hu, Yang-yang]Wenzhou Med Univ, Affiliated Hosp 2, Reprod Med Ctr, Obstet & Gynecol, Wenzhou 325000, Zhejiang, Peoples R China. |
Scopus学科分类 | Reproductive Medicine;Urology |
SCOPUS_ID | SCOPUS_ID:85200008244 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/216876 |
专题 | 附属第二医院 附属第二医院_生殖医学中心 第二临床医学院、附属第二医院、育英儿童医院 |
通讯作者 | Hu, Yang-yang |
作者单位 | 1.Wenzhou Med Univ, Affiliated Hosp 2, Pediat Endocrinol Genet & Metab, Wenzhou 325000, Zhejiang, Peoples R China; 2.Wenzhou Med Univ, Affiliated Hosp 2, Reprod Med Ctr, Obstet & Gynecol, Wenzhou 325000, Zhejiang, Peoples R China |
第一作者单位 | 附属第二医院; 第二临床医学院,附属第二医院、育英儿童医院 |
通讯作者单位 | 附属第二医院; 第二临床医学院,附属第二医院、育英儿童医院; 生殖医学中心 |
第一作者的第一单位 | 附属第二医院 |
推荐引用方式 GB/T 7714 | Cao, Shun-shun,Liu, Xiao-ming,Song, Bo-tian,et al. Interpretable machine learning models for predicting clinical pregnancies associated with surgical sperm retrieval from testes of different etiologies: a retrospective study[J]. BMC Urology,2024,24(1). |
APA | Cao, Shun-shun, Liu, Xiao-ming, Song, Bo-tian, & Hu, Yang-yang. (2024). Interpretable machine learning models for predicting clinical pregnancies associated with surgical sperm retrieval from testes of different etiologies: a retrospective study. BMC Urology, 24(1). |
MLA | Cao, Shun-shun,et al."Interpretable machine learning models for predicting clinical pregnancies associated with surgical sperm retrieval from testes of different etiologies: a retrospective study".BMC Urology 24.1(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论