科研成果详情

题名Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy
作者
发表日期2024-10
发表期刊Radiotherapy and Oncology   影响因子和分区
语种英语
原始文献类型Article
关键词Radiation esophagitis Esophageal cancer Radiomics Dosiomics Deep learning
其他关键词CELL LUNG-CANCER ; VOXEL-BASED ANALYSIS ; RISK-FACTORS ; RADIOTHERAPY ; GRADE ; VMAT
摘要Purpose: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade >= 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT) and radiation dose (RD) distribution images. Materials and methods: A total of 273 EC patients underwent VMAT were retrospectively reviewed and enrolled from two centers and divided into training (n = 152), internal validation (n = 66), and external validation (n = 55) cohorts, respectively. Radiomic and dosiomic features along with DL features using convolutional neural networks were extracted and screened from CT and RD images to predict RE. The performance of these models was evaluated and compared using the area under curve (AUC) of the receiver operating characteristic curves (ROC). Results: There were 5 and 10 radiomic and dosiomic features were screened, respectively. XGBoost achieved a best AUC of 0.703, 0.694 and 0.801, 0.729 with radiomic and dosiomic features in the internal and external validation cohorts, respectively. ResNet34 achieved a best prediction AUC of 0.642, 0.657 and 0.762, 0.737 for radiomics based DL model (DLR) and RD based DL model (DLD) in the internal and external validation cohorts, respectively. Combined model of DLD + Dosiomics + clinical factors achieved a best AUC of 0.913, 0.821 and 0.805 in the training, internal, and external validation cohorts, respectively. Conclusion: Although the dose was not responsible for the prediction accuracy, the combination of various feature extraction methods was a factor in improving the RE prediction accuracy. Combining DLD with dosiomic features was promising in the pretreatment prediction of RE for EC patients underwent VMAT.
资助项目Key project of Zhejiang Natural Science Foundation [Z24A050009]; Key project of Zhejiang Provincial Health Science and Technology Program [WKJ-ZJ-2437]; Major project of Wenzhou Science and Technology Bureau [ZY2020011]; Scientific Research Fund of Zhejiang Provincial Education Department [Y202352935]; Zhejiang Engineering Research Center for innovation and application of Intelligent Radiotherapy Technology; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory; Wenzhou key Laboratory of basic science and translational research of radiation oncology; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation; Discipline Cluster of Oncology, Wenzhou Medical University
出版者ELSEVIER IRELAND LTD
ISSN0167-8140
EISSN1879-0887
卷号199
DOI10.1016/j.radonc.2024.110438
页数9
WOS类目Oncology ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Oncology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001273956400001
收录类别SCIE ; SCOPUS ; PUBMED
URL查看原文
PubMed ID39013503
SCOPUSEID2-s2.0-85198568195
通讯作者地址[Cao, Zhuo;Jin, Juebin;Jin, Xiance]Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiotherapy Ctr, Wenzhou 325000, Peoples R China.
Scopus学科分类Hematology;Oncology;Radiology, Nuclear Medicine and Imaging
SCOPUS_IDSCOPUS_ID:85198568195
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/216825
专题附属第一医院
基础医学院(机能实验教学中心)
其他_温州医科大学附属衢州医院
其他_温州医科大学慈溪生物医药研究院
通讯作者Cao, Zhuo; Jin, Juebin; Jin, Xiance
作者单位
1.Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiotherapy Ctr, Wenzhou 325000, Peoples R China;
2.Wenzhou Med Univ, Cixi Biomed Res Inst, Wenzhou 315000, Zhejiang, Peoples R China;
3.Wenzhou Med Univ, Quzhou Affiliated Hosp, Quzhou Peoples Hosp, Dept Radiotherapy, Quzhou 324000, Peoples R China;
4.Lishui Peoples Hosp, Dept Resp, Lishui 323000, Peoples R China;
5.Wenzhou Med Univ, Sch Basic Med Sci, Wenzhou 325000, Peoples R China
第一作者单位附属第一医院
通讯作者单位附属第一医院
第一作者的第一单位附属第一医院
推荐引用方式
GB/T 7714
Xie, Congying,Yu, Xianwen,Tan, Ninghang,et al. Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy[J]. Radiotherapy and Oncology,2024,199.
APA Xie, Congying., Yu, Xianwen., Tan, Ninghang., Zhang, Jicheng., Su, Wanyu., ... & Jin, Xiance. (2024). Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy. Radiotherapy and Oncology, 199.
MLA Xie, Congying,et al."Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy".Radiotherapy and Oncology 199(2024).

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xie, Congying]的文章
[Yu, Xianwen]的文章
[Tan, Ninghang]的文章
百度学术
百度学术中相似的文章
[Xie, Congying]的文章
[Yu, Xianwen]的文章
[Tan, Ninghang]的文章
必应学术
必应学术中相似的文章
[Xie, Congying]的文章
[Yu, Xianwen]的文章
[Tan, Ninghang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。