科研成果详情

题名Stochastic biogeography-based learning improved RIME algorithm: application to image segmentation of lupus nephritis
作者
发表日期2024-07-17
发表期刊Cluster Computing   影响因子和分区
语种英语
原始文献类型Article ; Early Access
关键词Swarm intelligence algorithm Chaotic mapping Rime optimization algorithm Renal pathology Biogeography-based strategy
其他关键词PARTICLE SWARM OPTIMIZATION ; GLOBAL OPTIMIZATION ; COMPUTATIONAL INTELLIGENCE ; DIFFERENTIAL EVOLUTION ; PATHOLOGY ; SEARCH ; TESTS
摘要Lupus nephritis (LN) is the most common symptom of systemic lupus erythematosus, emphasizing its importance in the field of medicine. The growing frequency of LN has increased the need for effective image segmentation algorithms. With the increasing prevalence of LN, the demand for efficient image segmentation techniques has grown. To enhance the efficiency of image segmentation of LN, many researchers employ a methodology that integrates multi-threshold image segmentation (MTIS) with metaheuristic algorithms (MAs). However, conventional MAs-based MTIS methods tend to converge towards local optima and have slow convergence rates, resulting in poor segmentation results within a limited iteration number. To address these challenges, this study proposes an advanced optimization algorithm termed Biogeography-based Learning Rime Optimization Algorithm (BLRIME) and integrates it with the MTIS approach for LN image segmentation. MTIS employs a non-local means 2D histogram to gather image information and uses 2D Renyi's entropy as the fitness function. BLRIME builds upon the foundation of the RIME algorithm, incorporating two significant strategies. Firstly, the introduction of piecewise chaotic mapping (PCM) ameliorates the quality of the initial solution provided by the algorithm. Secondly, a stochastic biogeography-based learning strategy (SBLS) prevents the RIME algorithm from falling into the local optimum early. SBLS is proposed by this study based on the biogeography-based learning strategy. In order to assess the efficacy of the BLRIME, this paper devises a series of experiments to compare it with similar algorithms presented at IEEE CEC 2017. Experimental studies have been conducted to provide empirical evidence demonstrating the superior rates of convergence and precision achieved by BLRIME. Subsequently, the BLRIME-based MTIS algorithm is employed to segment the LN images compared to other peer algorithms. Furthermore, the peak signal-to-noise ratio, feature similarity index, and structural similarity index are utilized as evaluation metrics to assess the image segmentation outcomes. The experimental results prove that BLRIME demonstrates superior global search capabilities, resulting in remarkable outcomes in the segmentation of LN images.
资助项目Wenzhou Science and Technology Foundation [Y2020922]; National Natural Science Foundation of China [62301367, 62076185]; Natural Science Foundation of Zhejiang Province [LZ22F020005]
出版者SPRINGER
ISSN1386-7857
EISSN1573-7543
卷号27期号:10页码:14185-14229
DOI10.1007/s10586-024-04628-8
页数45
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS研究方向Computer Science
WOS记录号WOS:001270467800001
收录类别SCIE ; SCOPUS ; EI
EI入藏号20242916727688
EI主题词Image segmentation
EI分类号405.3 Surveying ; 454.3 Ecology and Ecosystems ; 716.1 Information Theory and Signal Processing ; 723.1 Computer Programming ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 731.1 Control Systems ; 921.5 Optimization Techniques ; 921.6 Numerical Methods ; 961 Systems Science
URL查看原文
SCOPUSEID2-s2.0-85198852111
通讯作者地址[Chen, Huiling]Wenzhou Univ, Inst Big Data & Informat Technol, Wenzhou 325000, Peoples R China. ; [Chen, Xiaowei;Chen, Peirong]Wenzhou Med Univ, Affiliated Hosp 1, Dept Rheumatol & Immunol, Wenzhou 325000, Peoples R China.
Scopus学科分类Software;Computer Networks and Communications
SCOPUS_IDSCOPUS_ID:85198852111
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/216716
专题附属第一医院
附属第一医院_风湿免疫科
通讯作者Chen, Huiling; Chen, Xiaowei; Chen, Peirong
作者单位
1.Wenzhou Univ, Inst Big Data & Informat Technol, Wenzhou 325000, Peoples R China;
2.Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran;
3.Sichuan Univ, Coll Comp Sci, Chengdu 610065, Sichuan, Peoples R China;
4.Wenzhou Med Univ, Affiliated Hosp 1, Dept Rheumatol & Immunol, Wenzhou 325000, Peoples R China
通讯作者单位附属第一医院;  风湿免疫科
推荐引用方式
GB/T 7714
Zheng, Boli,Chen, Yi,Wang, Chaofan,et al. Stochastic biogeography-based learning improved RIME algorithm: application to image segmentation of lupus nephritis[J]. Cluster Computing,2024,27(10):14185-14229.
APA Zheng, Boli., Chen, Yi., Wang, Chaofan., Heidari, Ali Asghar., Liu, Lei., ... & Chen, Peirong. (2024). Stochastic biogeography-based learning improved RIME algorithm: application to image segmentation of lupus nephritis. Cluster Computing, 27(10), 14185-14229.
MLA Zheng, Boli,et al."Stochastic biogeography-based learning improved RIME algorithm: application to image segmentation of lupus nephritis".Cluster Computing 27.10(2024):14185-14229.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zheng, Boli]的文章
[Chen, Yi]的文章
[Wang, Chaofan]的文章
百度学术
百度学术中相似的文章
[Zheng, Boli]的文章
[Chen, Yi]的文章
[Wang, Chaofan]的文章
必应学术
必应学术中相似的文章
[Zheng, Boli]的文章
[Chen, Yi]的文章
[Wang, Chaofan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。