科研成果详情

题名Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging
作者
发表日期2024
发表期刊JOURNAL OF HEPATOCELLULAR CARCINOMA   影响因子和分区
语种英语
原始文献类型Article
关键词hepatocellular carcinoma magnetic resonance imaging microvascular invasion radiomics
其他关键词PREOPERATIVE PREDICTION
摘要Objective: The aim of this study is to develop and verify a magnetic resonance imaging (MRI)-based radiomics model for predicting the microvascular invasion grade (MVI) before surgery in individuals diagnosed with nodular hepatocellular carcinoma (HCC). Methods: A total of 198 patients were included in the study and were randomly stratified into two groups: a training group consisting of 139 patients and a test group comprising 59 patients. The tumor lesion was manually segmented on the largest cross-sectional slice using ITK SNAP, with agreement reached between two radiologists. The selection of radiomics features was carried out using the LASSO (Least Absolute Shrinkage and Selection Operator) algorithm. Radiomics models were then developed through maximum correlation, minimum redundancy, and logistic regression analyses. The performance of the models in predicting MVI grade was assessed using the area under the receiver operating characteristic curve (AUC) and metrics derived from the confusion matrix. Results: There were no notable statistical differences in sex, age, BMI (body mass index), tumor size, and location between the training and test groups. The AP and PP radiomic model constructed for predicting MVI grade demonstrated an AUC of 0.83 (0.75- 0.88) and 0.73 (0.64-0.80) in the training group and an AUC of 0.74 (0.61-0.85) and 0.62 (0.48-0.74) in test group, respectively. The combined model consists of imaging data and clinical data (age and AFP), achieved an AUC of 0.85 (0.78-0.91) and 0.77 (0.64-0.87) in the training and test groups, respectively. Conclusion: A radiomics model utilizing -contrast -enhanced MRI demonstrates strong predictive capability for differentiating MVI grades in individuals with nodular HCC. This model could potentially function as a dependable and resilient tool to support hepatologists and radiologists in their preoperative decision -making processes.
资助项目Foundation of Wenzhou Science & Technology Bureau [Y2020170]
出版者DOVE MEDICAL PRESS LTD
ISSN2253-5969
EISSN2253-5969
卷号11页码:1185-1192
DOI10.2147/JHC.S461420
页数8
WOS类目Oncology
WOS研究方向Oncology
WOS记录号WOS:001257471200001
收录类别SCIE ; SCOPUS ; PUBMED
URL查看原文
PubMed ID38933179
SCOPUSEID2-s2.0-85196627233
通讯作者地址[Pan, Ke-Hua]Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiol, 1 Xuefu North Rd, Wenzhou 325000, Peoples R China.
Scopus学科分类Oncology;Hepatology
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/215326
专题第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科
通讯作者Pan, Ke-Hua
作者单位
Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiol, 1 Xuefu North Rd, Wenzhou 325000, Peoples R China
第一作者单位第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科
通讯作者单位第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科
第一作者的第一单位第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科
推荐引用方式
GB/T 7714
Zhang, Zhao,Jia, Xiu-Fen,Chen, Xiao-Yu,et al. Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging[J]. JOURNAL OF HEPATOCELLULAR CARCINOMA,2024,11:1185-1192.
APA Zhang, Zhao, Jia, Xiu-Fen, Chen, Xiao-Yu, Chen, Yong-Hua, & Pan, Ke-Hua. (2024). Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging. JOURNAL OF HEPATOCELLULAR CARCINOMA, 11, 1185-1192.
MLA Zhang, Zhao,et al."Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging".JOURNAL OF HEPATOCELLULAR CARCINOMA 11(2024):1185-1192.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhao]的文章
[Jia, Xiu-Fen]的文章
[Chen, Xiao-Yu]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhao]的文章
[Jia, Xiu-Fen]的文章
[Chen, Xiao-Yu]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhao]的文章
[Jia, Xiu-Fen]的文章
[Chen, Xiao-Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。