题名 | Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging |
作者 | |
发表日期 | 2024 |
发表期刊 | JOURNAL OF HEPATOCELLULAR CARCINOMA 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
关键词 | hepatocellular carcinoma magnetic resonance imaging microvascular invasion radiomics |
其他关键词 | PREOPERATIVE PREDICTION |
摘要 | Objective: The aim of this study is to develop and verify a magnetic resonance imaging (MRI)-based radiomics model for predicting the microvascular invasion grade (MVI) before surgery in individuals diagnosed with nodular hepatocellular carcinoma (HCC). Methods: A total of 198 patients were included in the study and were randomly stratified into two groups: a training group consisting of 139 patients and a test group comprising 59 patients. The tumor lesion was manually segmented on the largest cross-sectional slice using ITK SNAP, with agreement reached between two radiologists. The selection of radiomics features was carried out using the LASSO (Least Absolute Shrinkage and Selection Operator) algorithm. Radiomics models were then developed through maximum correlation, minimum redundancy, and logistic regression analyses. The performance of the models in predicting MVI grade was assessed using the area under the receiver operating characteristic curve (AUC) and metrics derived from the confusion matrix. Results: There were no notable statistical differences in sex, age, BMI (body mass index), tumor size, and location between the training and test groups. The AP and PP radiomic model constructed for predicting MVI grade demonstrated an AUC of 0.83 (0.75- 0.88) and 0.73 (0.64-0.80) in the training group and an AUC of 0.74 (0.61-0.85) and 0.62 (0.48-0.74) in test group, respectively. The combined model consists of imaging data and clinical data (age and AFP), achieved an AUC of 0.85 (0.78-0.91) and 0.77 (0.64-0.87) in the training and test groups, respectively. Conclusion: A radiomics model utilizing -contrast -enhanced MRI demonstrates strong predictive capability for differentiating MVI grades in individuals with nodular HCC. This model could potentially function as a dependable and resilient tool to support hepatologists and radiologists in their preoperative decision -making processes. |
资助项目 | Foundation of Wenzhou Science & Technology Bureau [Y2020170] |
出版者 | DOVE MEDICAL PRESS LTD |
ISSN | 2253-5969 |
EISSN | 2253-5969 |
卷号 | 11页码:1185-1192 |
DOI | 10.2147/JHC.S461420 |
页数 | 8 |
WOS类目 | Oncology |
WOS研究方向 | Oncology |
WOS记录号 | WOS:001257471200001 |
收录类别 | SCIE ; SCOPUS ; PUBMED |
URL | 查看原文 |
PubMed ID | 38933179 |
SCOPUSEID | 2-s2.0-85196627233 |
通讯作者地址 | [Pan, Ke-Hua]Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiol, 1 Xuefu North Rd, Wenzhou 325000, Peoples R China. |
Scopus学科分类 | Oncology;Hepatology |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/215326 |
专题 | 第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科 |
通讯作者 | Pan, Ke-Hua |
作者单位 | Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiol, 1 Xuefu North Rd, Wenzhou 325000, Peoples R China |
第一作者单位 | 第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科 |
通讯作者单位 | 第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科 |
第一作者的第一单位 | 第一临床医学院(信息与工程学院)、附属第一医院_影像医学与核医学_放射科 |
推荐引用方式 GB/T 7714 | Zhang, Zhao,Jia, Xiu-Fen,Chen, Xiao-Yu,et al. Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging[J]. JOURNAL OF HEPATOCELLULAR CARCINOMA,2024,11:1185-1192. |
APA | Zhang, Zhao, Jia, Xiu-Fen, Chen, Xiao-Yu, Chen, Yong-Hua, & Pan, Ke-Hua. (2024). Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging. JOURNAL OF HEPATOCELLULAR CARCINOMA, 11, 1185-1192. |
MLA | Zhang, Zhao,et al."Radiomics-Based Prediction of Microvascular Invasion Grade in Nodular Hepatocellular Carcinoma Using Contrast-Enhanced Magnetic Resonance Imaging".JOURNAL OF HEPATOCELLULAR CARCINOMA 11(2024):1185-1192. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论