科研成果详情

题名RBGNet: Reliable Boundary-Guided Segmentation of Choroidal Neovascularization
作者
会议录名称SPRINGER INTERNATIONAL PUBLISHING AG   影响因子和分区
语种英语
原始文献类型Proceedings Paper ; Conference Paper
会议名称26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
会议日期OCT 08-12, 2023
会议地点Vancouver, CANADA
关键词CNV OCTA Transformer Uncertainty Multi-task
其他关键词ANGIOGRAPHY
摘要Choroidal neovascularization (CNV) is a leading cause of visual impairment in retinal diseases. Optical coherence tomography angiography (OCTA) enables non-invasive CNV visualization with micrometerscale resolution, aiding precise extraction and analysis. Nevertheless, the irregular shape patterns, variable scales, and blurred lesion boundaries of CNVs present challenges for their precise segmentation in OCTA images. In this study, we propose a Reliable Boundary-Guided choroidal neovascularization segmentation Network (RBGNet) to address these issues. Specifically, our RBGNet comprises a dual-stream encoder and a multi-task decoder. The encoder consists of a convolutional neural network (CNN) stream and a transformer stream. The transformer captures global context and establishes long-range dependencies, compensating for the limitations of the CNN. The decoder is designed with multiple tasks to address specific challenges. Reliable boundary guidance is achieved by evaluating the uncertainty of each pixel label, By assigning it as a weight to regions with highly unstable boundaries, the network's ability to learn precise boundary locations can be improved, ultimately leading to more accurate segmentation results. The prediction results are also used to adaptively adjust the weighting factors between losses to guide the network's learning process. Our experimental results demonstrate that RBGNet outperforms existing methods, achieving a Dice score of 90.42% for CNV region segmentation and 90.25% for CNV vessel segmentation. https://github.com/iMED-Lab/RBGnet-Pytorch.git.
资助项目Ningbo Natural Science Foundation[2022J143];A*STAR[A20H4b0141];National Science Foundation Program of China[62103398,62272444];Zhejiang Provincial Natural Science Foundation of China[LQ23F010002,LR22F020008,LZ23F010002]
出版地CHAM
出版者Springer Science and Business Media Deutschland GmbH
ISSN0302-9743
EISSN1611-3349
卷号14223 LNCS
页码163-172
DOI10.1007/978-3-031-43901-8_16
页数10
URL查看原文
WOS类目Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001109630700016
收录类别CPCI ; CPCI-S ; EI ; SCOPUS
发表日期2023
EI入藏号20234314955270
EI主题词Optical tomography
EI分类号461.6 Medicine and Pharmacology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.3 Optical Devices and Systems
通讯作者地址[Zhao, Yitian;Zhang, Jiong]Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Inst Biomed Engn, Ningbo, Peoples R China.
Scopus记录号2-s2.0-85174699895
Scopus学科分类Theoretical Computer Science;Computer Science (all)
引用统计
文献类型会议论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/210066
专题其他_温州医科大学慈溪生物医药研究院
通讯作者Zhao, Yitian; Zhang, Jiong
作者单位
1.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Inst Biomed Engn, Ningbo, Peoples R China;
2.Wenzhou Med Univ, Cixi Biomed Res Inst, Ningbo, Peoples R China;
3.Ningbo Univ Technol, Sch Cyber Sci & Engn, Ningbo, Peoples R China;
4.Xi An Jiao Tong Univ, Sch Life Sci & Technol, Xian, Peoples R China;
5.Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen, Peoples R China;
6.ASTAR, Inst High Performance Comp, Singapore, Singapore
第一作者单位其他_温州医科大学慈溪生物医药研究院
推荐引用方式
GB/T 7714
Chen, Tao,Zhao, Yitian,Mou, Lei,et al. RBGNet: Reliable Boundary-Guided Segmentation of Choroidal Neovascularization[C]. CHAM:Springer Science and Business Media Deutschland GmbH,2023:163-172.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Tao]的文章
[Zhao, Yitian]的文章
[Mou, Lei]的文章
百度学术
百度学术中相似的文章
[Chen, Tao]的文章
[Zhao, Yitian]的文章
[Mou, Lei]的文章
必应学术
必应学术中相似的文章
[Chen, Tao]的文章
[Zhao, Yitian]的文章
[Mou, Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。