题名 | RBGNet: Reliable Boundary-Guided Segmentation of Choroidal Neovascularization |
作者 | |
会议录名称 | SPRINGER INTERNATIONAL PUBLISHING AG 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Proceedings Paper ; Conference Paper |
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) |
会议日期 | OCT 08-12, 2023 |
会议地点 | Vancouver, CANADA |
关键词 | CNV OCTA Transformer Uncertainty Multi-task |
其他关键词 | ANGIOGRAPHY |
摘要 | Choroidal neovascularization (CNV) is a leading cause of visual impairment in retinal diseases. Optical coherence tomography angiography (OCTA) enables non-invasive CNV visualization with micrometerscale resolution, aiding precise extraction and analysis. Nevertheless, the irregular shape patterns, variable scales, and blurred lesion boundaries of CNVs present challenges for their precise segmentation in OCTA images. In this study, we propose a Reliable Boundary-Guided choroidal neovascularization segmentation Network (RBGNet) to address these issues. Specifically, our RBGNet comprises a dual-stream encoder and a multi-task decoder. The encoder consists of a convolutional neural network (CNN) stream and a transformer stream. The transformer captures global context and establishes long-range dependencies, compensating for the limitations of the CNN. The decoder is designed with multiple tasks to address specific challenges. Reliable boundary guidance is achieved by evaluating the uncertainty of each pixel label, By assigning it as a weight to regions with highly unstable boundaries, the network's ability to learn precise boundary locations can be improved, ultimately leading to more accurate segmentation results. The prediction results are also used to adaptively adjust the weighting factors between losses to guide the network's learning process. Our experimental results demonstrate that RBGNet outperforms existing methods, achieving a Dice score of 90.42% for CNV region segmentation and 90.25% for CNV vessel segmentation. https://github.com/iMED-Lab/RBGnet-Pytorch.git. |
资助项目 | Ningbo Natural Science Foundation[2022J143];A*STAR[A20H4b0141];National Science Foundation Program of China[62103398,62272444];Zhejiang Provincial Natural Science Foundation of China[LQ23F010002,LR22F020008,LZ23F010002] |
出版地 | CHAM |
出版者 | Springer Science and Business Media Deutschland GmbH |
ISSN | 0302-9743 |
EISSN | 1611-3349 |
卷号 | 14223 LNCS |
页码 | 163-172 |
DOI | 10.1007/978-3-031-43901-8_16 |
页数 | 10 |
URL | 查看原文 |
WOS类目 | Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001109630700016 |
收录类别 | CPCI ; CPCI-S ; EI ; SCOPUS |
发表日期 | 2023 |
EI入藏号 | 20234314955270 |
EI主题词 | Optical tomography |
EI分类号 | 461.6 Medicine and Pharmacology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.3 Optical Devices and Systems |
通讯作者地址 | [Zhao, Yitian;Zhang, Jiong]Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Inst Biomed Engn, Ningbo, Peoples R China. |
Scopus记录号 | 2-s2.0-85174699895 |
Scopus学科分类 | Theoretical Computer Science;Computer Science (all) |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/210066 |
专题 | 其他_温州医科大学慈溪生物医药研究院 |
通讯作者 | Zhao, Yitian; Zhang, Jiong |
作者单位 | 1.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Inst Biomed Engn, Ningbo, Peoples R China; 2.Wenzhou Med Univ, Cixi Biomed Res Inst, Ningbo, Peoples R China; 3.Ningbo Univ Technol, Sch Cyber Sci & Engn, Ningbo, Peoples R China; 4.Xi An Jiao Tong Univ, Sch Life Sci & Technol, Xian, Peoples R China; 5.Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen, Peoples R China; 6.ASTAR, Inst High Performance Comp, Singapore, Singapore |
第一作者单位 | 其他_温州医科大学慈溪生物医药研究院 |
推荐引用方式 GB/T 7714 | Chen, Tao,Zhao, Yitian,Mou, Lei,et al. RBGNet: Reliable Boundary-Guided Segmentation of Choroidal Neovascularization[C]. CHAM:Springer Science and Business Media Deutschland GmbH,2023:163-172. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Tao]的文章 |
[Zhao, Yitian]的文章 |
[Mou, Lei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Tao]的文章 |
[Zhao, Yitian]的文章 |
[Mou, Lei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Tao]的文章 |
[Zhao, Yitian]的文章 |
[Mou, Lei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论