科研成果详情

题名Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage
作者
发表日期2024-01
发表期刊BRIEFINGS IN BIOINFORMATICS   影响因子和分区
语种英语
原始文献类型Article
关键词multi-omics integration consensus clustering missing labels unequal sample coverage predictive labels
其他关键词SEVERE ASTHMA ; CLASS DISCOVERY ; FLUID
摘要Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).
资助项目Swedish Research Council [2018-00520, 2017-01142]; Swedish Heart Lung Foundation [20190017, 20190421]; National Natural Science Foundation of China [62372331]
出版者OXFORD UNIV PRESS
ISSN1467-5463
EISSN1477-4054
卷号25期号:1
DOI10.1093/bib/bbad501
页数7
WOS类目Biochemical Research Methods ; Mathematical & Computational Biology
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
WOS记录号WOS:001173375300027
收录类别SCIE ; SCOPUS
URL查看原文
PubMed ID38205966
SCOPUSEID2-s2.0-85183620093
通讯作者地址[Wheelock, Åsa M.]Respiratory Medicine Unit,Department of Medicine Solna,Centre for Molecular Medicine,Karolinska Institutet,Stockholm,171 76,Sweden ; [Zhou, Meng]School of Biomedical Engineering,Wenzhou Medical University,Wenzhou,325027,China
Scopus学科分类Information Systems;Molecular Biology
TOP期刊TOP期刊
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/209448
专题仁济学院_眼视光、生物医学工程学部
通讯作者Zhou, Meng; Wheelock, Åsa M.
作者单位
1.The Karolinska Institute,Sweden;
2.The School of Biomedical Engineering,Wenzhou Medical University,China;
3.The Data Science Institute,National Heart & Lung Institute,United Kingdom;
4.Imperial College London,United Kingdom;
5.Karolinska University Hospital,Stockholm,Sweden;
6.The Karolinska Institute,Stockholm,Sweden
通讯作者单位仁济学院_眼视光、生物医学工程学部
推荐引用方式
GB/T 7714
Li, Chuan-Xing,Chen, Hongyan,Zounemat-Kermani, Nazanin,et al. Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage[J]. BRIEFINGS IN BIOINFORMATICS,2024,25(1).
APA Li, Chuan-Xing., Chen, Hongyan., Zounemat-Kermani, Nazanin., Adcock, Ian M.., Sköld, C. Magnus., ... & Wheelock, Åsa M.. (2024). Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage. BRIEFINGS IN BIOINFORMATICS, 25(1).
MLA Li, Chuan-Xing,et al."Consensus clustering with missing labels (ccml): a consensus clustering tool for multi-omics integrative prediction in cohorts with unequal sample coverage".BRIEFINGS IN BIOINFORMATICS 25.1(2024).

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Chuan-Xing]的文章
[Chen, Hongyan]的文章
[Zounemat-Kermani, Nazanin]的文章
百度学术
百度学术中相似的文章
[Li, Chuan-Xing]的文章
[Chen, Hongyan]的文章
[Zounemat-Kermani, Nazanin]的文章
必应学术
必应学术中相似的文章
[Li, Chuan-Xing]的文章
[Chen, Hongyan]的文章
[Zounemat-Kermani, Nazanin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。