题名 | Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems |
作者 | |
发表日期 | 2023-10 |
发表期刊 | APPLIED RADIATION AND ISOTOPES 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article ; Journal Article |
关键词 | Energy spectra Diagnostic Radial basis function neural network |
其他关键词 | MAMMOGRAPHY ; PERFORMANCE ; RADIOLOGY ; ARTIFACTS ; MODELS ; CT |
摘要 | In digital subtraction angiography (digital subtraction total cerebral angiography), cardiac and macrovascular cardiography, anorectal radiology, fluoroscopy, and computed tomography (CT), a prior knowledge to X-ray energy spectrum is crucial for assessing the image quality and also calculating patient X-ray dosage. The present investigation's main objective is to propose an intelligent technique for faster calculating X-ray energy spectrum of medical imaging systems with different exposure settings of tube voltage, filter material, and thickness based on limited specific spectra. In this study, Monte Carlo N Particle (MCNP) simulation code was initially used to generate some limited X-ray spectra for tube voltages of 20, 30, 40, 50, 80, 100, 130, and 150 kV for two different filters of beryllium and aluminum with thicknesses of 0. 4, 0.8, 1.2, 1.6 and 2 mm. Tube voltage, type, and thickness of filter were used as the 3 inputs of 150 Radial Basis Function Neural Network (RBFNN) to forecast point by point of the X-ray spectrum. After training, the RBFNNs could forecast most of the X-ray spectra for tube voltages in the range of 20-150 kV and two various filters of aluminum and beryllium with thicknesses in the range of 0-2 mm. |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
ISSN | 0969-8043 |
EISSN | 1872-9800 |
卷号 | 200 |
DOI | 10.1016/j.apradiso.2023.110961 |
页数 | 8 |
WOS类目 | Chemistry, Inorganic & Nuclear ; Nuclear Science & Technology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS研究方向 | Chemistry ; Nuclear Science & Technology ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001148955800001 |
收录类别 | SCIE ; PUBMED ; EI ; SCOPUS |
在线发表日期 | 2023-07 |
EI入藏号 | 20233214489463 |
EI主题词 | Aluminum |
EI分类号 | 461.6 Medicine and Pharmacology ; 541.1 Aluminum ; 542.1 Beryllium and Alloys ; 549 Nonferrous Metals and Alloys ; 723.5 Computer Applications ; 746 Imaging Techniques ; 922.2 Mathematical Statistics |
URL | 查看原文 |
PubMed ID | 3753173 |
SCOPUSEID | 2-s2.0-85166488875 |
通讯作者地址 | [Zhang, Xicai]Pingyang Hospital Affiliated to Wenzhou Medical University,Wenzhou,China ; [Guoqiang, Xu]Yongkang First People's Hospital,Department of Neurology,China |
Scopus学科分类 | Radiation |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/209446 |
专题 | 药学院(分析测试中心) 其他_附属平阳医院(平阳县人民医院) |
通讯作者 | Zhang, Xicai; Guoqiang, Xu |
作者单位 | 1.Anorectal Department,The Third People's Hospital of Hangzaou,Hangzhou,311115,China; 2.Zhejiang Chinese Medical University,China; 3.Wenzhou Medical University,China; 4.School of Pharmacy,Wenzhou Medical University,Wenzhou,325000,China; 5.Zhejiang Chinese Medical University,Hangzhou,310000,China; 6.Department of Digital Media Technology,Hangzhou Dianzi University,Hangzhou,310018,China; 7.Pingyang Hospital Affiliated to Wenzhou Medical University,Wenzhou,China; 8.Yongkang First People's Hospital,Department of Neurology,China |
通讯作者单位 | 附属平阳医院(平阳县人民医院) |
推荐引用方式 GB/T 7714 | Zhanjian, Cai,Zheng, Jiadi,Shan, Liu,et al. Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems[J]. APPLIED RADIATION AND ISOTOPES,2023,200. |
APA | Zhanjian, Cai., Zheng, Jiadi., Shan, Liu., Wei, Wang., Zhu, Wenzong., ... & Guoqiang, Xu. (2023). Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems. APPLIED RADIATION AND ISOTOPES, 200. |
MLA | Zhanjian, Cai,et al."Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems".APPLIED RADIATION AND ISOTOPES 200(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论