科研成果详情

题名Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems
作者
发表日期2023-10
发表期刊APPLIED RADIATION AND ISOTOPES   影响因子和分区
语种英语
原始文献类型Article ; Journal Article
关键词Energy spectra Diagnostic Radial basis function neural network
其他关键词MAMMOGRAPHY ; PERFORMANCE ; RADIOLOGY ; ARTIFACTS ; MODELS ; CT
摘要In digital subtraction angiography (digital subtraction total cerebral angiography), cardiac and macrovascular cardiography, anorectal radiology, fluoroscopy, and computed tomography (CT), a prior knowledge to X-ray energy spectrum is crucial for assessing the image quality and also calculating patient X-ray dosage. The present investigation's main objective is to propose an intelligent technique for faster calculating X-ray energy spectrum of medical imaging systems with different exposure settings of tube voltage, filter material, and thickness based on limited specific spectra. In this study, Monte Carlo N Particle (MCNP) simulation code was initially used to generate some limited X-ray spectra for tube voltages of 20, 30, 40, 50, 80, 100, 130, and 150 kV for two different filters of beryllium and aluminum with thicknesses of 0. 4, 0.8, 1.2, 1.6 and 2 mm. Tube voltage, type, and thickness of filter were used as the 3 inputs of 150 Radial Basis Function Neural Network (RBFNN) to forecast point by point of the X-ray spectrum. After training, the RBFNNs could forecast most of the X-ray spectra for tube voltages in the range of 20-150 kV and two various filters of aluminum and beryllium with thicknesses in the range of 0-2 mm.
出版者PERGAMON-ELSEVIER SCIENCE LTD
ISSN0969-8043
EISSN1872-9800
卷号200
DOI10.1016/j.apradiso.2023.110961
页数8
WOS类目Chemistry, Inorganic & Nuclear ; Nuclear Science & Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Chemistry ; Nuclear Science & Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001148955800001
收录类别SCIE ; PUBMED ; EI ; SCOPUS
在线发表日期2023-07
EI入藏号20233214489463
EI主题词Aluminum
EI分类号461.6 Medicine and Pharmacology ; 541.1 Aluminum ; 542.1 Beryllium and Alloys ; 549 Nonferrous Metals and Alloys ; 723.5 Computer Applications ; 746 Imaging Techniques ; 922.2 Mathematical Statistics
URL查看原文
PubMed ID3753173
SCOPUSEID2-s2.0-85166488875
通讯作者地址[Zhang, Xicai]Pingyang Hospital Affiliated to Wenzhou Medical University,Wenzhou,China ; [Guoqiang, Xu]Yongkang First People's Hospital,Department of Neurology,China
Scopus学科分类Radiation
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/209446
专题药学院(分析测试中心)
其他_附属平阳医院(平阳县人民医院)
通讯作者Zhang, Xicai; Guoqiang, Xu
作者单位
1.Anorectal Department,The Third People's Hospital of Hangzaou,Hangzhou,311115,China;
2.Zhejiang Chinese Medical University,China;
3.Wenzhou Medical University,China;
4.School of Pharmacy,Wenzhou Medical University,Wenzhou,325000,China;
5.Zhejiang Chinese Medical University,Hangzhou,310000,China;
6.Department of Digital Media Technology,Hangzhou Dianzi University,Hangzhou,310018,China;
7.Pingyang Hospital Affiliated to Wenzhou Medical University,Wenzhou,China;
8.Yongkang First People's Hospital,Department of Neurology,China
通讯作者单位附属平阳医院(平阳县人民医院)
推荐引用方式
GB/T 7714
Zhanjian, Cai,Zheng, Jiadi,Shan, Liu,et al. Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems[J]. APPLIED RADIATION AND ISOTOPES,2023,200.
APA Zhanjian, Cai., Zheng, Jiadi., Shan, Liu., Wei, Wang., Zhu, Wenzong., ... & Guoqiang, Xu. (2023). Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems. APPLIED RADIATION AND ISOTOPES, 200.
MLA Zhanjian, Cai,et al."Proposing an intelligent technique based on radial basis function neural network to forecast the energy spectrum of diagnostic X-ray imaging systems".APPLIED RADIATION AND ISOTOPES 200(2023).

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhanjian, Cai]的文章
[Zheng, Jiadi]的文章
[Shan, Liu]的文章
百度学术
百度学术中相似的文章
[Zhanjian, Cai]的文章
[Zheng, Jiadi]的文章
[Shan, Liu]的文章
必应学术
必应学术中相似的文章
[Zhanjian, Cai]的文章
[Zheng, Jiadi]的文章
[Shan, Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。