题名 | Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection in OCTA Images |
作者 | |
会议录名称 | SPRINGER INTERNATIONAL PUBLISHING AG 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Proceedings Paper ; Conference Paper |
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) |
会议日期 | OCT 08-12, 2023 |
会议地点 | Vancouver, CANADA |
关键词 | OCTA Alzheimer's Disease Polar Transformation Alzheimer’s Disease |
其他关键词 | SEGMENTATION ; NETWORK |
摘要 | Optical Coherence Tomography Angiography (OCTA) is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature. Ophthalmologists commonly use region-based analysis, such as the ETDRS grid, to study OCTA image biomarkers and understand the correlation with AD. In this work, we propose a novel deep-learning framework called Polar-Net. Our approach involves mapping OCTA images from Cartesian coordinates to polar coordinates, which allows for the use of approximate sector convolution and enables the implementation of the ETDRS grid-based regional analysis method commonly used in clinical practice. Furthermore, Polar-Net incorporates clinical prior information of each sector region into the training process, which further enhances its performance. Additionally, our framework adapts to acquire the importance of the corresponding retinal region, which helps researchers and clinicians understand the model's decision-making process in detecting AD and assess its conformity to clinical observations. Through evaluations on private and public datasets, we have demonstrated that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD. In addition, we also show that the two innovative modules introduced in our framework have a significant impact on improving overall performance. |
资助项目 | A*STAR[A20H4b0141];National Science Foundation Program of China[62103398,62272444];Zhejiang Provincial Natural Science Foundation of China[LR22F020008];Youth Innovation Promotion Association CAS[2021298] |
出版地 | CHAM |
出版者 | Springer Science and Business Media Deutschland GmbH |
ISSN | 0302-9743 |
EISSN | 1611-3349 |
卷号 | 14226 LNCS |
页码 | 607-617 |
DOI | 10.1007/978-3-031-43990-2_57 |
页数 | 11 |
URL | 查看原文 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging |
WOS研究方向 | Computer Science ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001109636000057 |
收录类别 | CPCI ; CPCI-S ; SCOPUS ; EI |
发表日期 | 2023 |
EI入藏号 | 20234314954944 |
EI主题词 | Optical tomography |
EI分类号 | 403.2 Regional Planning and Development ; 461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 723.5 Computer Applications ; 741.3 Optical Devices and Systems ; 901.2 Education ; 912.2 Management |
通讯作者地址 | [Zhao, Yitian]Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Cixi Inst Biomed Engn, Ningbo, Peoples R China. ; [Xu, Yanwu]South China Univ Technol, Sch Future Technol, Guangzhou, Peoples R China. ; [Xu, Yanwu]Pazhou Lab, Guangzhou, Peoples R China. |
Scopus记录号 | 2-s2.0-85174726385 |
Scopus学科分类 | Theoretical Computer Science;Computer Science (all) |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/205671 |
专题 | 其他_温州医科大学慈溪生物医药研究院 |
通讯作者 | Xu, Yanwu; Zhao, Yitian |
作者单位 | 1.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Cixi Inst Biomed Engn, Ningbo, Peoples R China; 2.Wenzhou Med Univ, Cixi Biomed Res Inst, Ningbo, Peoples R China; 3.South China Univ Technol, Sch Future Technol, Guangzhou, Peoples R China; 4.Pazhou Lab, Guangzhou, Peoples R China; 5.ASTAR, Inst High Performance Comp, Singapore, Singapore; 6.Southern Univ Sci & Technol, Dept Comp Sci, Shenzhen, Peoples R China; 7.Univ Liverpool, Dept Eye & Vis Sci, Liverpool, Merseyside, England; 8.Edge Hill Univ, Dept Comp Sci, Ormskirk, England |
第一作者单位 | 其他_温州医科大学慈溪生物医药研究院 |
推荐引用方式 GB/T 7714 | Liu, Shouyue,Hao, Jinkui,Xu, Yanwu,et al. Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection in OCTA Images[C]. CHAM:Springer Science and Business Media Deutschland GmbH,2023:607-617. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论