科研成果详情

题名Kernel extreme learning with harmonized bat algorithm for prediction of pyrene toxicity in rats
作者
发表日期2023-11-09
发表期刊Basic & clinical pharmacology & toxicology   影响因子和分区
语种英语
原始文献类型Journal Article
关键词Disease diagnosis Extreme learning machine Feature selection Hepatotoxicity Pyrene Swarm intelligence
其他关键词OPTIMIZATION
摘要Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants and manufactured substances conferring toxicity to human health. The present study investigated whether pyrene, a type of PAH, harms rats. Our research provides an effective feature selection strategy for the animal dataset from Wenzhou Medical University's Experimental Animal Center to thoroughly examine the impacts of PAH toxicity on rat features. Initially, we devised a high-performance optimization method (SCBA) and added the Sobol sequence, vertical crossover, and horizontal crossover mechanisms to the bat algorithm (BA). The SCBA-KELM model, which combines SCBA with the kernel extreme learning machine model (KELM), has excellent accuracy and high stability for selecting features. Benchmark function tests are then used in this research to verify the overall optimization performance of SCBA. In this paper, the feature selection performance of SCBA-KELM is verified using various comparative experiments. According to the results, the features of the genes PXR, CAR, CYP2B1/2, and CYP1A1/2 have the most impact on rats. The SCBA-KELM model's classification performance for the gene dataset was 100%, and the model's precision value for the public dataset was around 96%, as determined by the classification index. In conclusion, the model utilized in this research is anticipated to be a reliable and valuable approach for toxicological classification and assessment.
资助项目Zhejiang Province Public Welfare Technology Application Research Project[LGD22H260004];Science and Technology Plan Project of Wenzhou, China[Y20220050];Natural Science Foundation of Zhejiang Province[LZ22F020005];National Natural Science Foundation of China[U1809209];National Natural Science Foundation of China[62076185]
出版者WILEY
ISSN1742-7835
EISSN1742-7843
卷号134期号:2页码:250-271
DOI10.1111/bcpt.13959
页数22
WOS类目Pharmacology & Pharmacy ; Toxicology
WOS研究方向Pharmacology & Pharmacy ; Toxicology
WOS记录号WOS:001113088400001
收录类别PUBMED ; SCIE ; SCOPUS
URL查看原文
PubMed ID37945549
SCOPUSEID2-s2.0-85178475947
通讯作者地址[Zhao, Dong]College of Computer Science and Technology,Changchun Normal University,Jilin,Changchun,130032,China ; [Chen, Huiling]College of Computer Science and Artificial Intelligence,Wenzhou University,Zhejiang,Wenzhou,325035,China ; [Zhu, Jiayin]Laboratory Animal Center,Wenzhou Medical University,Zhejiang,Wenzhou,325035,China
Scopus学科分类Toxicology;Pharmacology
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/183815
专题实验动物中心
通讯作者Zhao, Dong; Chen, Huiling; Zhu, Jiayin
作者单位
1.College of Computer Science and Technology,Changchun Normal University,Changchun,China;
2.School of Surveying and Geospatial Engineering,College of Engineering,University of Tehran,Tehran,Iran;
3.Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province,Wenzhou University,Wenzhou,China;
4.Laboratory Animal Center,Wenzhou Medical University,Wenzhou,China
通讯作者单位实验动物中心
推荐引用方式
GB/T 7714
Su, Hang,Zhao, Dong,Heidari, Ali Asghar,et al. Kernel extreme learning with harmonized bat algorithm for prediction of pyrene toxicity in rats[J]. Basic & clinical pharmacology & toxicology,2023,134(2):250-271.
APA Su, Hang, Zhao, Dong, Heidari, Ali Asghar, Cai, Zhennao, Chen, Huiling, & Zhu, Jiayin. (2023). Kernel extreme learning with harmonized bat algorithm for prediction of pyrene toxicity in rats. Basic & clinical pharmacology & toxicology, 134(2), 250-271.
MLA Su, Hang,et al."Kernel extreme learning with harmonized bat algorithm for prediction of pyrene toxicity in rats".Basic & clinical pharmacology & toxicology 134.2(2023):250-271.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Su, Hang]的文章
[Zhao, Dong]的文章
[Heidari, Ali Asghar]的文章
百度学术
百度学术中相似的文章
[Su, Hang]的文章
[Zhao, Dong]的文章
[Heidari, Ali Asghar]的文章
必应学术
必应学术中相似的文章
[Su, Hang]的文章
[Zhao, Dong]的文章
[Heidari, Ali Asghar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。