科研成果详情

题名An efficient machine learning approach for diagnosis of paraquat-poisoned patients
作者
发表日期2015-04-01
发表期刊COMPUTERS IN BIOLOGY AND MEDICINE   影响因子和分区
语种英语
原始文献类型Article
关键词Paraquat Poison Extreme learning machine Medical diagnosis
其他关键词FEEDFORWARD NETWORKS ; BIAS CORRECTION ; CLASSIFICATION
摘要Numerous people die of paraquat (PQ) poisoning because they were not diagnosed and treated promptly at an early stage. Till now, determination of PQ levels in blood or urine is still the only way to confirm the PQ poisoning. In order to develop a new diagnostic method, the potential of machine learning technique was explored in this study. A newly,developed classification technique, extreme learning machine (ELM), was taken to discriminate the PQ-poisoned patients from the healthy controls. 15 PQ-poisoned patients recruited from The First Affiliated Hospital of Wenzhou Medical University who had a history of direct contact with PQ and 16 healthy volunteers were involved in the study. The ELM method is examined based on the metabolites of blood samples determined by gas chromatography coupled with mass spectrometry in terms of classification accuracy, sensitivity, specificity and AUC (area under the receiver operating characteristic (ROC) curve) criterion, respectively. Additionally, the feature selection was also investigated to further boost the performance of ELM and the most influential feature was detected. The experimental results demonstrate that the proposed approach can be regarded as a success with the excellent classification accuracy, AUC, sensitivity and specificity of 91.64%, 0.9156%, 9133% and 91.78%, respectively. Promisingly, the proposed method might serve as a new candidate of powerful tools for diagnosis of PQ-poisoned patients with excellent performance. (C) 2015 Elsevier Ltd. All rights reserved.
资助项目National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC) [61303113, 81401558, 61402337]; Science and Technology Committee of Shanghai Municipality of China [KF1405]; Zhejiang Provincial Natural Science Foundation of ChinaNatural Science Foundation of Zhejiang Province [LY14H230001, LQ13G010007, LQ13F020011, LY14F020035]; key construction academic subject (medical innovation) of Zhejiang Province [11-CX26]
出版者PERGAMON-ELSEVIER SCIENCE LTD
出版地OXFORD
ISSN0010-4825
EISSN1879-0534
卷号59页码:116-124
DOI10.1016/j.compbiomed.2015.02.003
页数28
WOS类目Biology ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Mathematical & Computational Biology
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Computer Science ; Engineering ; Mathematical & Computational Biology
WOS记录号WOS:000352172600014
收录类别SCIE ; PUBMED ; EI ; SCOPUS
EI入藏号20150800551283
EI主题词Diagnosis
URL查看原文
PubMed ID25704654
SCOPUSEID2-s2.0-84923046261
通讯作者地址[Chen, Huiling]College of Physics and Electronic Information Engineering, Wenzhou University,Wenzhou,325035,China
Scopus学科分类Computer Science Applications;Health Informatics
TOP期刊TOP期刊
引用统计
被引频次:122[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/18346
专题附属第一医院
基础医学院(机能实验教学中心)
第一临床医学院(信息与工程学院)、附属第一医院
基础医学院(机能实验教学中心)_基础医学实验教学中心_机能实验教学中心(挂靠、校级)
通讯作者Chen, Huiling
作者单位
1.The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325000,China;
2.Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325000,China;
3.Function Experiment Teaching Center, Wenzhou Medical University,Wenzhou,325035,China;
4.College of Physics and Electronic Information Engineering, Wenzhou University,Wenzhou,325035,China
第一作者单位附属第一医院;  第一临床医学院(信息与工程学院)、附属第一医院
第一作者的第一单位附属第一医院
推荐引用方式
GB/T 7714
Hu, Lufeng,Hong, Guangliang,Ma, Jianshe,et al. An efficient machine learning approach for diagnosis of paraquat-poisoned patients[J]. COMPUTERS IN BIOLOGY AND MEDICINE,2015,59:116-124.
APA Hu, Lufeng, Hong, Guangliang, Ma, Jianshe, Wang, Xianqin, & Chen, Huiling. (2015). An efficient machine learning approach for diagnosis of paraquat-poisoned patients. COMPUTERS IN BIOLOGY AND MEDICINE, 59, 116-124.
MLA Hu, Lufeng,et al."An efficient machine learning approach for diagnosis of paraquat-poisoned patients".COMPUTERS IN BIOLOGY AND MEDICINE 59(2015):116-124.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Hu, Lufeng]的文章
[Hong, Guangliang]的文章
[Ma, Jianshe]的文章
百度学术
百度学术中相似的文章
[Hu, Lufeng]的文章
[Hong, Guangliang]的文章
[Ma, Jianshe]的文章
必应学术
必应学术中相似的文章
[Hu, Lufeng]的文章
[Hong, Guangliang]的文章
[Ma, Jianshe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。