科研成果详情

题名A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals
作者
发表日期2017-01-12
发表期刊PLOS ONE   影响因子和分区
语种英语
原始文献类型Article
其他关键词CONSTRAINED SPHERICAL DECONVOLUTION ; DIFFUSION MRI DATA ; HUMAN BRAIN ; FIBER ORIENTATIONS ; WEIGHTED MRI ; RECONSTRUCTION ; TRACTOGRAPHY ; TENSOR ; ANISOTROPY ; ARCHITECTURE
摘要Diffusion-weighted magnetic resonance imaging is a non-invasive imaging method that has been increasingly used in neuroscience imaging over the last decade. Partial volume effects (PVEs) exist in sampling signal for many physical and actual reasons, which lead to inaccurate fiber imaging. We overcome the influence of PVEs by separating isotropic signal from diffusion-weighted signal, which can provide more accurate estimation of fiber orientations. In this work, we use a novel response function (RF) and the correspondent fiber orientation distribution function (fODF) to construct different signal models, in which case the fODF is represented using dictionary basis function. We then put forward a new index P-iso, which is a part of fODF to quantify white and gray matter. The classic Richardson-Lucy (RL) model is usually used in the field of digital image processing to solve the problem of spherical deconvolution caused by highly ill-posed least-squares algorithm. In this case, we propose an innovative model integrating RL model with spatial regularization to settle the suggested double-models, which improve noise resistance and accuracy of imaging. Experimental results of simulated and real data show that the proposal method, which we call iRL, can robustly reconstruct a more accurate fODF and the quantitative index Piso performs better than fractional anisotropy and general fractional anisotropy.
资助项目National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61379020]; open foundation of Wenzhou Medical University [LKFJ014]
出版者PUBLIC LIBRARY SCIENCE
出版地SAN FRANCISCO
ISSN1932-6203
卷号12期号:1页码:e0168864.
DOI10.1371/journal.pone.0168864
页数21
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
WOS记录号WOS:000391949500021
收录类别SCIE ; PUBMED ; SCOPUS
URL查看原文
PubMed ID28081561
PMC记录号PMC5233428
SCOPUSEID2-s2.0-85009431374
通讯作者地址[Feng, Yuanjing]Zhejiang Univ Technol, Inst Informat Proc & Automat, Hangzhou, Zhejiang, Peoples R China.
Scopus学科分类Multidisciplinary
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/18331
专题第一临床医学院(信息与工程学院)、附属第一医院_老化与神经疾病重点实验室
通讯作者Feng, Yuanjing
作者单位
1.Zhejiang Univ Technol, Inst Informat Proc & Automat, Hangzhou, Zhejiang, Peoples R China;
2.Wenzhou Med Univ, Zhejiang Prov Key Lab Aging & Neurol Disorder Res, Wenzhou, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Xu, Tiantian,Feng, Yuanjing,Wu, Ye,et al. A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals[J]. PLOS ONE,2017,12(1):e0168864..
APA Xu, Tiantian., Feng, Yuanjing., Wu, Ye., Zeng, Qingrun., Zhang, Jun., ... & Zhuge, Qichuan. (2017). A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals. PLOS ONE, 12(1), e0168864..
MLA Xu, Tiantian,et al."A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals".PLOS ONE 12.1(2017):e0168864..

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Tiantian]的文章
[Feng, Yuanjing]的文章
[Wu, Ye]的文章
百度学术
百度学术中相似的文章
[Xu, Tiantian]的文章
[Feng, Yuanjing]的文章
[Wu, Ye]的文章
必应学术
必应学术中相似的文章
[Xu, Tiantian]的文章
[Feng, Yuanjing]的文章
[Wu, Ye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。