科研成果详情

题名Dense Depth Completion Based on Multi-Scale Confidence and Self-Attention Mechanism for Intestinal Endoscopy
作者
发表日期2023
会议录名称Proceedings - IEEE International Conference on Robotics and Automation   影响因子和分区
语种英语
原始文献类型Conference article (CA) ; Conference Paper
关键词Deep learning Human robot interaction Man machine systems Surgery Textures 3-D shape 3d locations Attention mechanisms Depth completion Depth Estimation Depth information Depth sensors Humans-robot interactions Multi-scales Self-attention mechanism depth completion Endoscopy human-robot interaction self-attention mechanism
摘要Doctors perform limited one-way intestine endoscopy, in which advanced surgical robots with depth sensors, such as stereo and ToF endoscopes, can only provide sparse and incomplete depth information. However, dense, accurate and instant depth estimation during endoscopy is vital for doctors to judge the 3D location and shape of intestinal tissues, which affects the human-robot interaction between doctors and surgical robots, such as the operation on the subsequent moving of the probe. In this paper, we present a deep learning-based dense depth completion method for intestine endoscopy. We utilize the scattered depth information from depth sensors to make up for the deficiency of features in the intestine and design a multi-scale confidence prediction network to extract dense geometric depth features. Then, we introduce the structure awareness module based on the self-attention mechanism in the depth completion network to enhance the geometry and texture features of the intestine. We also present a virtual multi-modal RGBD intestine dataset and conduct comprehensive experiments on a total of three intestine datasets. The experimental results clearly demonstrate that our method achieves better results in all metrics in all intestinal environments compared to state-of-the-art methods. © 2023 IEEE.
资助项目National Natural Science Foundation of China[62202137];Natural Science Foundation of Zhejiang Province[LQ22F030004]
出版者Institute of Electrical and Electronics Engineers Inc.
出版地NEW YORK
ISSN1050-4729
EISSN2577-087X
卷号2023-May
页码7476-7482
DOI10.1109/ICRA48891.2023.10161549
页数7
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS记录号WOS:001048371100067
收录类别EI ; CPCI ; SCOPUS
EI入藏号20233514632062
EI主题词Endoscopy
EI分类号461.4 Ergonomics and Human Factors Engineering ; 461.6 Medicine and Pharmacology ; 731.5 Robotics
URL查看原文
Scopus记录号2-s2.0-85168708440
通讯作者地址[Sheng, Weiguo]Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Zhejiang, Peoples R China.
Scopus学科分类Software;Control and Systems Engineering;Electrical and Electronic Engineering;Artificial Intelligence
会议名称2023 IEEE International Conference on Robotics and Automation, ICRA 2023
会议地点London, United kingdom
会议日期May 29, 2023 - June 2, 2023
引用统计
文献类型会议论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/183122
专题附属第一医院_肛肠外科
通讯作者Sheng, Weiguo
作者单位
1.Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Zhejiang, Peoples R China;
2.Chinese Acad Sci, Haixi Inst, Quanzhou Inst Equipment Mfg, Quanzhou 362000, Peoples R China;
3.Hangzhou Dianzi Univ, Dept Digital Media Technol, Hangzhou 310018, Peoples R China;
4.Wenzhou Med Univ, Dept Colorectal Surg, Affiliated Hosp 1, Wenzhou 325035, Peoples R China
推荐引用方式
GB/T 7714
Liu, Ruyu,Liu, Zhengzhe,Zhang, Haoyu,et al. Dense Depth Completion Based on Multi-Scale Confidence and Self-Attention Mechanism for Intestinal Endoscopy[C]. NEW YORK:Institute of Electrical and Electronics Engineers Inc.,2023:7476-7482.

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Ruyu]的文章
[Liu, Zhengzhe]的文章
[Zhang, Haoyu]的文章
百度学术
百度学术中相似的文章
[Liu, Ruyu]的文章
[Liu, Zhengzhe]的文章
[Zhang, Haoyu]的文章
必应学术
必应学术中相似的文章
[Liu, Ruyu]的文章
[Liu, Zhengzhe]的文章
[Zhang, Haoyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。