题名 | Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade |
作者 | |
发表日期 | 2023-07-11 |
发表期刊 | ONCOGENESIS 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Article |
其他关键词 | RESISTANCE ; LANDSCAPE ; MECHANISM |
摘要 | Immune checkpoint blockade (ICB) therapies have brought unprecedented advances in cancer treatment, but responses are limited to a fraction of patients. Therefore, sustained and substantial efforts are required to advance clinical and translational investigation on managing patients receiving ICB. In this study, we investigated the dynamic changes in molecular profiles of T-cell exhaustion (TEX) during ICB treatment using single-cell and bulk transcriptome analysis, and demonstrated distinct exhaustion molecular profiles associated with ICB response. By applying an ensemble deep-learning computational framework, we identified an ICB-associated transcriptional signature consisting of 16 TEX-related genes, termed ITGs. Incorporating 16 ITGs into a machine-learning model called MLTIP achieved reliable predictive power for clinical ICB response with an average AUC of 0.778, and overall survival (pooled HR = 0.093, 95% CI, 0.031-0.28, P < 0.001) across multiple ICB-treated cohorts. Furthermore, the MLTIP consistently demonstrated superior predictive performance compared to other well-established markers and signatures, with an average increase in AUC of 21.5%. In summary, our results highlight the potential of this TEX-dependent transcriptional signature as a tool for precise patient stratification and personalized immunotherapy, with clinical translation in precision medicine. |
资助项目 | National Natural Science Foundation of China[61973240,62072341,62272346]; |
出版者 | SPRINGERNATURE |
ISSN | 2157-9024 |
卷号 | 12期号:1 |
DOI | 10.1038/s41389-023-00482-2 |
页数 | 11 |
WOS类目 | Oncology |
WOS研究方向 | Oncology |
WOS记录号 | WOS:001029783000001 |
收录类别 | SCIE ; PUBMED ; SCOPUS |
URL | 查看原文 |
PubMed ID | 37433793 |
SCOPUSEID | 2-s2.0-85165255254 |
通讯作者地址 | [Sun, Jie]School of Biomedical Engineering,Eye Hospital,Wenzhou Medical University,Wenzhou,325027,China ; [Zhou, Meng]School of Biomedical Engineering,Eye Hospital,Wenzhou Medical University,Wenzhou,325027,China |
Scopus学科分类 | Molecular Biology;Cancer Research |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/181639 |
专题 | 仁济学院_眼视光、生物医学工程学部 |
通讯作者 | Sun, Jie; Zhou, Meng |
作者单位 | School of Biomedical Engineering,Eye Hospital,Wenzhou Medical University,Wenzhou,325027,China |
第一作者单位 | 仁济学院_眼视光、生物医学工程学部 |
通讯作者单位 | 仁济学院_眼视光、生物医学工程学部 |
第一作者的第一单位 | 仁济学院_眼视光、生物医学工程学部 |
推荐引用方式 GB/T 7714 | Zhang, Zicheng,Chen, Hongyan,Yan, Dongxue,et al. Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade[J]. ONCOGENESIS,2023,12(1). |
APA | Zhang, Zicheng, Chen, Hongyan, Yan, Dongxue, Chen, Lu, Sun, Jie, & Zhou, Meng. (2023). Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade. ONCOGENESIS, 12(1). |
MLA | Zhang, Zicheng,et al."Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade".ONCOGENESIS 12.1(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论