科研成果详情

题名Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade
作者
发表日期2023-07-11
发表期刊ONCOGENESIS   影响因子和分区
语种英语
原始文献类型Article
其他关键词RESISTANCE ; LANDSCAPE ; MECHANISM
摘要Immune checkpoint blockade (ICB) therapies have brought unprecedented advances in cancer treatment, but responses are limited to a fraction of patients. Therefore, sustained and substantial efforts are required to advance clinical and translational investigation on managing patients receiving ICB. In this study, we investigated the dynamic changes in molecular profiles of T-cell exhaustion (TEX) during ICB treatment using single-cell and bulk transcriptome analysis, and demonstrated distinct exhaustion molecular profiles associated with ICB response. By applying an ensemble deep-learning computational framework, we identified an ICB-associated transcriptional signature consisting of 16 TEX-related genes, termed ITGs. Incorporating 16 ITGs into a machine-learning model called MLTIP achieved reliable predictive power for clinical ICB response with an average AUC of 0.778, and overall survival (pooled HR = 0.093, 95% CI, 0.031-0.28, P < 0.001) across multiple ICB-treated cohorts. Furthermore, the MLTIP consistently demonstrated superior predictive performance compared to other well-established markers and signatures, with an average increase in AUC of 21.5%. In summary, our results highlight the potential of this TEX-dependent transcriptional signature as a tool for precise patient stratification and personalized immunotherapy, with clinical translation in precision medicine.
资助项目National Natural Science Foundation of China[61973240,62072341,62272346];
出版者SPRINGERNATURE
ISSN2157-9024
卷号12期号:1
DOI10.1038/s41389-023-00482-2
页数11
WOS类目Oncology
WOS研究方向Oncology
WOS记录号WOS:001029783000001
收录类别SCIE ; PUBMED ; SCOPUS
URL查看原文
PubMed ID37433793
SCOPUSEID2-s2.0-85165255254
通讯作者地址[Sun, Jie]School of Biomedical Engineering,Eye Hospital,Wenzhou Medical University,Wenzhou,325027,China ; [Zhou, Meng]School of Biomedical Engineering,Eye Hospital,Wenzhou Medical University,Wenzhou,325027,China
Scopus学科分类Molecular Biology;Cancer Research
引用统计
文献类型期刊论文
条目标识符https://kms.wmu.edu.cn/handle/3ETUA0LF/181639
专题仁济学院_眼视光、生物医学工程学部
通讯作者Sun, Jie; Zhou, Meng
作者单位
School of Biomedical Engineering,Eye Hospital,Wenzhou Medical University,Wenzhou,325027,China
第一作者单位仁济学院_眼视光、生物医学工程学部
通讯作者单位仁济学院_眼视光、生物医学工程学部
第一作者的第一单位仁济学院_眼视光、生物医学工程学部
推荐引用方式
GB/T 7714
Zhang, Zicheng,Chen, Hongyan,Yan, Dongxue,et al. Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade[J]. ONCOGENESIS,2023,12(1).
APA Zhang, Zicheng, Chen, Hongyan, Yan, Dongxue, Chen, Lu, Sun, Jie, & Zhou, Meng. (2023). Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade. ONCOGENESIS, 12(1).
MLA Zhang, Zicheng,et al."Deep learning identifies a T-cell exhaustion-dependent transcriptional signature for predicting clinical outcomes and response to immune checkpoint blockade".ONCOGENESIS 12.1(2023).

条目包含的文件

条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Zicheng]的文章
[Chen, Hongyan]的文章
[Yan, Dongxue]的文章
百度学术
百度学术中相似的文章
[Zhang, Zicheng]的文章
[Chen, Hongyan]的文章
[Yan, Dongxue]的文章
必应学术
必应学术中相似的文章
[Zhang, Zicheng]的文章
[Chen, Hongyan]的文章
[Yan, Dongxue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。