题名 | Pneumothorax prediction using a foraging and hunting based ant colony optimizer assisted support vector machine |
作者 | |
发表日期 | 2023-07 |
发表期刊 | Computers in biology and medicine 影响因子和分区 |
语种 | 英语 |
原始文献类型 | Journal Article ; Research Support, Non-U.S. Gov't |
关键词 | ACO Ant colony optimizer Feature selection Pneumothorax Support vector machine Swarm intelligence |
其他关键词 | OBJECTIVE DEPLOYMENT OPTIMIZATION ; GLOBAL OPTIMIZATION ; DIFFERENTIAL EVOLUTION ; BIOPSY ; ALGORITHM ; COMPLICATIONS ; INTELLIGENCE ; SEARCH ; TESTS |
摘要 | Although PNLB is generally considered safe, it is still invasive and risky. Pneumothorax, the most common complication of lung puncture, can cause shortness of breath, chest pain, and even life-threatening. Therefore, the auxiliary diagnosis for pneumothorax is of great clinical interest. This paper proposes an ant colony optimizer with slime mould foraging behavior and collaborative hunting, called SCACO, in which slime mould foraging behavior is combined to improve the convergence accuracy and solution quality of ACOR. Then the ability of ACO to jump out of the local optimum is optimized by an adaptive collaborative hunting strategy when trapped in the local optimum. As a first step toward Pneumothorax diagnostic prediction, we suggested an SVM classifier based on bSCACO (bSCACO-SVM), which uses the proposed SCACO's binary version as the basis for its feature selection algorithms. To demonstrate the SCACO performance, we first used the slime mould foraging behavior and adaptive cooperative hunting strategy, then compared SCACO with nine basic algorithms and nine variants, respectively. Finally, we verified bSCACO-SVM on various widely used public datasets and applied it to the Pneumothorax prediction issue, showing that it has robust classification prediction capacity and can be successfully employed for tuberculous pleural effusion diagnostic prediction. |
资助项目 | Ministry of Education[20YJA790090];Princess Nourah bint Abdulrahman University[PNURSP2023R193];Wenzhou Science & Technology Bureau[ZG2020030]; |
出版者 | Elsevier Ltd |
ISSN | 0010-4825 |
EISSN | 1879-0534 |
卷号 | 161 |
DOI | 10.1016/j.compbiomed.2023.106948 |
页数 | 28 |
WOS类目 | Biology ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Mathematical & Computational Biology |
WOS研究方向 | Life Sciences & Biomedicine - Other Topics ; Computer Science ; Engineering ; Mathematical & Computational Biology |
WOS记录号 | WOS:001001691000001 |
收录类别 | PUBMED ; EI ; SCIE ; SCOPUS |
在线发表日期 | 2023-05 |
EI入藏号 | 20232014105667 |
EI主题词 | Forecasting |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723 Computer Software, Data Handling and Applications ; 723.4 Artificial Intelligence ; 903.1 Information Sources and Analysis ; 921.5 Optimization Techniques |
URL | 查看原文 |
PubMed ID | 37207406 |
SCOPUSEID | 2-s2.0-85159328010 |
通讯作者地址 | [Liu, Lei]College of Computer Science,Sichuan University,Sichuan,Chengdu,610065,China ; [Kuang, Fangjun]School of Information Engineering,Wenzhou Business College,Wenzhou,325035,China ; [Cai, Chang]Department of Respiratory and Critical Care Medicine,The First Affiliated Hospital,Wenzhou Medical University,Wenzhou,China |
Scopus学科分类 | Health Informatics;Computer Science Applications |
TOP期刊 | TOP期刊 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/180532 |
专题 | 第一临床医学院(信息与工程学院)、附属第一医院 附属第一医院 仁济学院 |
通讯作者 | Kuang, Fangjun; Liu, Lei; Cai, Chang |
作者单位 | 1.Department of Respiratory and Critical Care Medicine,The First Affiliated Hospital,Wenzhou Medical University,Wenzhou,China; 2.Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province,The First Affiliated Hospital of Wenzhou Medical University,Wenzhou,325000,China; 3.Wenzhou Medical University Renji College,Wenzhou,China; 4.School of Information Engineering,Wenzhou Business College,Wenzhou,325035,China; 5.College of Computer Science,Sichuan University,Sichuan,Chengdu,610065,China; 6.Department of Computer Sciences,College of Computer and Information Science,Princess Nourah bint Abdulrahman University,P.O. Box 84428,Riyadh,11671,Saudi Arabia; 7.Department of Information Technology,College of Computer and Information Science,Princess Nourah bint Abdulrahman University,P.O. Box 84428,Riyadh,11671,Saudi Arabia |
第一作者单位 | 第一临床医学院(信息与工程学院)、附属第一医院; 附属第一医院 |
通讯作者单位 | 第一临床医学院(信息与工程学院)、附属第一医院; 附属第一医院 |
第一作者的第一单位 | 第一临床医学院(信息与工程学院)、附属第一医院; 附属第一医院 |
推荐引用方式 GB/T 7714 | Yang, Song,Lou, Lejing,Wang, Wangjia,et al. Pneumothorax prediction using a foraging and hunting based ant colony optimizer assisted support vector machine[J]. Computers in biology and medicine,2023,161. |
APA | Yang, Song., Lou, Lejing., Wang, Wangjia., Li, Jie., Jin, Xiao., ... & Cai, Chang. (2023). Pneumothorax prediction using a foraging and hunting based ant colony optimizer assisted support vector machine. Computers in biology and medicine, 161. |
MLA | Yang, Song,et al."Pneumothorax prediction using a foraging and hunting based ant colony optimizer assisted support vector machine".Computers in biology and medicine 161(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论