题名 | 紫外光条件下氯霉素的光解动力学及其毒性变化研究 |
其他题名 | Investigation of photolytic kinetics and toxicity of chloramphenicol under ultraviolent irradiation |
作者 | |
学位类型 | 硕士 |
导师 | 王学东 |
答辩日期 | 2014-06-04 |
学位授予单位 | 温州医科大学 |
学位专业 | 中药学 |
关键词 | CAP 光降解 紫外照射 高效液相色谱 斑马鱼 光致毒 |
摘要 | 氯霉素(CAP)属于酞胺醇类广谱抗生素,广泛应用于水产养殖,是环境中特别是水产养殖区及附近水域中普遍存在的一类抗生素,研究其环境转化、归趋和生态风险具有重要意义。表层水体中,光化学降解是CAP污染物的主要消减方式。因此我们针对于CAP在水体中的一系列光解反应和光致毒效应进行了分析。本实验以CAP为研究对象,以汞灯为光源,研究了CAP浓度、光照强度、溶液 pH、硝酸根(NO3- )、溶剂类型和活性氧簇(ROS)抑制剂对CAP光解的影响;分别对温州市温瑞塘河一级、二级及三级典型河道的水样进行了采集,考察了CAP在10个河道水样中的光解速率变化情况;利用模式生物斑马鱼建立生物模型,对CAP光解过程中的毒性变化进行了评价。主要结论如下:1、CAP的光解符合光解一级动力学公式。CAP的浓度升高会导致光解速率一定程度的下降。2、光照强度显著影响CAP的光解。CAP光解速率随着光照强度的增强而逐渐增大,但是随着光强的增大光解速率并不是成直线上升的。3、溶液pH对CAP的光解有明显影响。pH值为6左右时CAP光解速率最高,溶液pH高于或低于此值时,光解速率均降低,且碱性条件下影响较大。4、在NO3- 浓度为0-12.5 mol/L,添加NO3- 可对CAP的光解表现出一定的促进作用,超出该范围,光解速率随 NO3- 的加入而逐渐减小,故低浓度 NO3- 的加入能够促进光解进行。5、在二甲基亚砜(DMSO)溶液中,CAP的光解速率远低于在纯水中的速率,可能因为羟基自由基(•OH)在CAP的光解过程中起到很重要作用。6、叠氮化钠(NaN3)对CAP的光解起到一定的抑制作用,可能因为单线态氧(1O2)在CAP光解中有一定的促进作用。7、在环境实际水体中,所表现出来的CAP的光解速率明显低于纯水中,本研究中虽然未发现水体中的各组份与CAP的光解速率有显著的相关性,但贡献率表明NO3- 和NO2- 与CAP光解速率呈正相关,与单因素研究时得出的结论是一致的。此外,CAP的光解速率在pH>6时随着的pH的增高而降低,这也与单因素研究中的结论相吻合。8、利用模式生物斑马鱼的胚胎为试材,在研究CAP光解过程中毒性变化情况时发现,起始阶段时CAP的毒性随着光解过程的发展而增加,但当光解进行一定时间后,其对斑马鱼胚胎的毒性开始逐渐降低。这可能是因为CAP在光解初期分解为毒性更大的中间产物或产生了活性氧簇,从而对生物体造成一定的损伤,表现为光敏化毒性;后期随着光解的进行,上述物质进一步被分解而表现出毒性减。 |
其他摘要 | Chloramphenicol (CAP) is a widely used antibiotic in the treatment of human disease, livestock and aquaculture.It has been an emerging class of environmental pollutants [1-3]. Due to the special use in aquaculture, CAP directly contaminates the nearby rivers or seas [4-6]. Many researches on the photochemical behavior of the antibiotics have been done and the results show that photo-degradation plays a very important role in the degradation of antibiotic pollutants [7-9]. Usually studying of CAP pollutants is carried out under three conditions: non-environmental conditions, mimicked environmental conditions and environmental conditions. The water environment is a complex system, so it is necessary to assess the combined effect of dissolved substances and uncover the mechanism of photolytic dynamics from the difference between different conditions. Besides, it is also very important to the study of toxic variation in the photolysis process because of its toxicity and huge impact.The photochemical reaction is a reaction triggered by the absorption of photons. Photochemical process is a very complicated reaction process which involves multiple processes and reactions. In general photochemical reactions are divided into two categories: primary photolysis reaction and secondary photolysis reaction. The primary photochemical reaction includes the following types: photo-isomerization, intra-molecular rearrangement, photosensitive reaction and light polymerization. The secondary light reaction is the thermodynamic reactions of the primary light reaction products under environment conditions and is generally triggered by the intermediate products of the primary photochemical reactions. Secondary reaction is not related with the absorption of light wavelengths but the light intensity.High performance liquid chromatography (HPLC) and gas chromatography (GC) are the two main methods to quantitate CAP. GC has a high analytic speed and separation efficiency because the samples are in gas phase and can instantly reach equilibrium between the fluent phase and stable phase. The detection limit of GC is very low thus GC is used to detect traces of antibiotics. HPLC detection of CAP is regarded as a sensitive and reliable method although its detection limit is higher, probably in the range of 5-10 μg / kg, and the recycling rate lower. And this method is reproducible and with less false-positive results. HPLC has been a common tool to detect CAP with basically clear conditions. CAP has a strong UV absorption at 204 nm, and therefore can be analyzed directly by HPLC-determination of UVD. C18 column is mostly used with methanol or acetonitrile as the fluent phase. Here we investigated the influence of single factors (light intensity, nitrate, pH, solvent, NaN3) on the photolytic dynamics of CAP in pure water. Also we tested the photolytic kinetics of CAP in environmental water from Wenruitang River (Wenzhou, China) and analyzed the differences. Finally we used zebrafish as a model organism to study the toxicity of the CAP in the process of photolysis. |
语种 | 中文 |
学号 | 2009010713 |
发布年限 | 2010-05-27 |
毕业论文分类号 | 0R02 |
原始专题 | 环境与公共卫生学院 |
学位论文研究方向 | 氯霉素的光解以及毒性变化研究 |
参考文献 | 1. Tvrtko Smital, Till Luckenbach, Roberta Sauerborn, et al. Emerging contaminants pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms [J]. Mutation Research, 2004, 552(12):101 -117. 2. J. P. Bound, N. Voulvoulis. Pharmaceuticals in the aquatic environment a comparison of risk assessment strategies [J]. Chemosphere, 2004, 56(11): 1143-1155. 3. Stefan Weigel, Jan Kuhlmann, Heinrich H hnerfuss. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea [J]. The Science of The Total Environment, 2002, 295(13): 131-141. 4. Zaharie Moldovan. Occurrences of pharmaceutical and personalcare products as micropollutants in rivers from Romania [J].Chemosphere, 2006, 64(11): 1808-1817. 5. J. B. Ellis. Pharmaceutical and personal care products (PPCPs) in urban receiving waters [J]. Environment Pollution, 2006, 144(1):184-189. 6. Marcus Stumpf, Thomas A. Ternes, Rolf Dieter Wilken, et al. Polar drug residues in sewage and natural waters in the state of Riode Janeiro, Brazil [J]. The Science of The Total Environment, 1999, 225(1 2): 135-141. 7. Bruce J. Richardson, Paul K. S. Lam, Michael Martin. Emergingchemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China [J]. Marine Pollution Bulletin, 2005, 50(9): 913-920. 8. T. A. Ternes, M. Stumpf, J. Mueller, et al., Behavior and occurrence of estrogens in municipal sewage treatment plants I. investigations in Germany, Canada and Brazil [J]. The Science of The Total Environment, 1999, 225(1 2): 81-90. 9. Thomas A.Ternes, Adriano Joss (eds). Human pharmaceuticals, hormones and fragrance [M]. Anlytical Methods. 2006, U, K, : IWA Publishing. 55-95. 10. Christian G. Daughton. Non regulated water contaminants: emerging research [J]. Environmental Impact Assessment Review, 2004, 24 (7 8): 711-732. 11. F. Gagne, C. Blaise, C. Andre. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes [J]. Ecotoxicology and Environmental Safety, 2006, 64(3): 329-336. 12. P. K. Jjemba. Excretion and ecotoxicity of pharmaceutical andpersonal care products in the environment [J]. Ecotoxicology and Environmental Safety, 2006, 63(1): 113-130. 13. Kunmerer,K.Antibiotics in the aquatic envlronment- A review- Part.Chemos-Phere,2009,75(4): 417-434. 14. Sehwarzenbach,R.P.,Escher,B.1.,Fenner,K, et al.The challenge of micropollutants in aquatic systems. Science,2006,313(5790):1072-1077. 15. Segura, P. A.,Franeois,M,,Gagnon C., et al. Review of the occurrence of anti-infectives in contaminated wastewaters and natural and Drinking waters. Environmental Health Perspectives,2009, 117(5):675-684. 16. 贾暖,胡建英,孙建仙等.环境中的医药品与个人护理品.化学进展,2009,21(2/3):389-399. 17. watkinson,A.J.,Murby,E.J.,KolPin,D.W., et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of the Total Environment,2009,407(8):2711-2723. 18. Gulkowska,A.,Leung,H.W.,50,M.K., et al. Rernoval of antibiotics from wastewater by sewage treatment facilitics in Hong Kong and Shenzhen, China. Water Researeh.2008,42(l-2):395-403. 19. 叶赛.水环境抗生素分析及全国沿岸陆源排海浓度分布研究.大连海事大学,2008 20. Edhlund,B. L.,Arnold,W.A.,McNeill, K. Aquatic Photochemistry of nitrofuran antibiotics. Environmental Science &Teehnology,2006,40(17):5422-5427. 21. Boreen,A. L.,Arnold,W. A.,MeNeill, K.Photodegradation of pharmaceuticals in the aquatic environment: A review. Aquatic sciences,2003,65(4):320-341. 22. kanpp,C.W., L.A.,Hawes,J.N.,et al. Fate and effeets of enrofloxacin in aquaticsystems under different light conditions. Envirorimental Seienee & Teehnology, 2005,39(23):9140-9146. 23. 邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003. 24. 岳永德,花日茂,汤锋.土壤粒径对农药在十壤中的分布和光解的影响.安徽农业人学学报,1993,20(4):309-314 25. Gauhan L.C. and Casoida J.E. Degradation of trans and cis-ermethin on cotton and bean Plants. J. Agric Food Chem.,1978,26 (3):525-523. 26. HoLmstead R.L. Casida J.E. Ruzo L.O. et aL. Pyrethroid Photodecomposition: Permethrin.J. Agric Food,1978,26(3):590-595. 27. HoLrnstead R.L., FuLLmer D.G, Ruzo L.0. et aL Pyrethroid Photodecom- position: Pydrin.J. Afric .Food Chem.1978,26(4):954-959 28. 陈家华.高效液相色谱快速测定家禽组织中CAP残留的研究.中国抗生素杂志,1992,17(5):351-355 29. 李兰生,王勇强.对虾体内CAP含量测定方法的研究.青岛海洋大学学报,1995,25(3):400-406 30. devries,H.,Henegouwen,B.v.,Huf F.A.Photochemical decomposition of chloramphenicol in a 0.25% eyedroP and in a therapeutic intraocular coneentration. Intemational Joumal of harmaceuties,1984,20(3):265-27 31. Boer,Y.,Pijnenburg, A. HPLC determLnation of chloramphenicol degradation in eye drops. Pharlllacy Worid&Seienee, 1983, 5(3):95-01. 32. Okeniyi,5.0.,Kolawole,J.A.,Odunola M.T. etal. Kineties of light induced degradation of aqueous solution of chloramphenicol.Research Journal of Applied Seienees,2006,l(l-4):123-127. 33. Wong C C, Chu W. The direct photolysis and photocatalytic degradation of alachlor atdifferent TiO2and UV sources [J]. Chemosphere, 2003, 50(8): 981-987 34. Studies on photodegrdation 0f carbendazimin solvents and aqueous solutions xu Baocai, YUE Yongde H Yinghui,HUA Ri maol A a h u i Agncultural University He fei 230036) 35. Bilski,P.,Martinez, L.J.,Koker,E.B. ,et al. Photosensitization by norfloxacin is a function of pH. Photochemistry and Photobiology,1996,64(3):496-500. 36. Lateh,D.E.,Packer,J.L.,Stender,B.L.,etal.Aqueous Photochemistry of triclosan: Formation of 2,4-diehlorophenol,2,8-diehlorodibenzo -p-dioxin. And oligomerization produets. Environmental Toxieology and Chemistry,2005,24(3):517-525 37. Lateh,D.E.,Stender,B.L,Packer,J.L., et al. photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine. Environmental Science & Technology,2003,37(15):3342-3350. 38. John Mack, James. R.Bolton.Photochemistry of motrite and nitrate in aqueous solution: areview [J]. Journal of photochemistry and photobiology. A, Chemistry ., 1999,128: 1-13 39. 朱承驻.等离子体降解水相中有机污染物的机理研究[J].环境科学学报,2002,22(4):428-433 40. Sorensen Frimmel F H. Photochemical degradation of hydrophilic xenobiotics in the V/H2O2 process:influence of nitrate on the degradation rate of EDTA,2-amino-1-naphthalen esulfonate,diphenyl-4-sulfonate and 4,4-diaminostilbene-2,2 –disulfonate [J] . Water Res., 1997,31(11): 2885-991 41. 刘国光,丁学军,张学治等. 硝酸根对罗丹明 B 光解的敏化作用. 环境化学,2003,22(6):564-567 42. Lam, M.W.,Tantueo,K.,Mabury, 5. A. PhotoFate: A new approach in aceounting for the eontribution of indirect Photolysis of Pestieidesand Pharmaceutiealsin surfacewaters. Environmenial Science & Technology,2003,37(5):899-907. 43. Rajendran M.Inbaraj JJ.Gandhidasan R Photodynamic action of damnacanthal and nordamnacanthal2004(2-3) 44. 李冠武.王广策.李振刚.曾呈奎 藻红蛋白介导光动力治疗的光化学机制研究[期刊论文]-激光生物学报2001(2) 45. Oliver C.,Zafiriou ,Mary B.True. Nitrate Photolysis in Seawater by sunlight. Mar.Chem.,1979,8(1):33-42 46. Zepp R G,Hoigne J,Bader H. Nitrate-Induced Photooxidation of Trace Chemicals in water.Environ.Sci.Technol.,1987,21(5):443-450 47. Stangroom S J,Macleod C L,Lester J N. Photosensitized Transformation of the Herbicide 4-chloror-2-methylphenoxy Acetic Acid(MCPA)in Water. Water Res.,1998,32(3):623-632 48. 曹跟华,, 李二杰, 王素红,光催化降解与直接光解玫瑰红废水的机理研究[J]. 河北科技大学学报. 1008 .1542(2004) 04 -0068-04 49. Zhang Hongmei. Study on effect elements of TiO2 aqueous suspensions with photocatalysis and degradation of HA, 1671-3206(2009) 07-0970-04 50. CJ Huang, Dong QX, R.B.Walter, et al. Sperm cryopreservation of green swordtail Xiphophorus helleri, a fish with internal fertilization. Cryobiology 2004,48(3): 295-308 51. Jiao,S. J,,Zheng,S.R.,Yin,D.Q., et al. Aqueous Photolysis of tetracycline and toxicity of Photolytic products to luminescent bacteria. Chemosphere,2008,73(3):377-382 52. Martinez,L.J.,Sik,R.H.,Chignell,C. F. Fluoroquinolone antimierobials: Singlet oxygen,Superoxide and photot0Xicity. Photochemistry and Photobiology,1998,67(4):399-403. 53. Hayashi,N.,Nakata,Y.,YaZaki, A. New findings on the structure- phototoxicity relationship and Photostability of fluoroqui-nolones with various substituents at position 1. Antimierobial Agents and Chemotherapy,2004,48(3):799-503. 54. Agrawal,N.,Ray,R.S.,Farooq,M., et al. Photosensitizing Potential of ciprofloxacin at ambient level of UV radiation. Photochemistry and Photobiology,2007,83(5):1226-123 |
全文文件名 | 2009010713孙海罗2012中药学.pdf|2009010713孙海罗2012中药学.pdf |
文献类型 | 学位论文 |
条目标识符 | https://kms.wmu.edu.cn/handle/3ETUA0LF/117524 |
专题 | 温州医科大学 |
作者单位 | 溫州医科大学环境与公共卫生学院 |
推荐引用方式 GB/T 7714 | 孙海罗. 紫外光条件下氯霉素的光解动力学及其毒性变化研究[D]. 温州医科大学,2014. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[孙海罗]的文章 |
百度学术 |
百度学术中相似的文章 |
[孙海罗]的文章 |
必应学术 |
必应学术中相似的文章 |
[孙海罗]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论