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Abstract
Background: Automatic primary gross tumor volume (GTVp) segmentation for
nasopharyngeal carcinoma (NPC) is a quite challenging task because of the
existence of similar visual characteristics between tumors and their surround-
ings, especially on computed tomography (CT) images with severe low contrast
resolution. Therefore, most recently proposed methods based on radiomics or
deep learning (DL) is difficult to achieve good results on CT datasets.
Purpose: A peritumoral radiomics-guided generative adversarial network
(PRG-GAN) was proposed to address this challenge.
Methods: A total of 157 NPC patients with CT images was collected and divided
into training, validation, and testing cohorts of 108, 9, and 30 patients, respec-
tively. The proposed model was based on a standard GAN consisting of a
generator network and a discriminator network. Morphological dilation on the
initial segmentation results from GAN was first conducted to delineate annular
peritumoral region, in which radiomics features were extracted as priori guide
knowledge. Then, radiomics features were fused with semantic features by the
discriminator’s fully connected layer to achieve the voxel-level classification and
segmentation. The dice similarity coefficient (DSC), 95% Hausdorff distance
(HD95), and average symmetric surface distance (ASSD) were used to evalu-
ate the segmentation performance using a paired samples t-test with Bonferroni
correction and Cohen’s d (d) effect sizes. A two-sided p-value of less than 0.05
was considered statistically significant.
Results: The model-generated predictions had a high overlap ratio with the
ground truth. The average DSC, HD95, and ASSD were significantly improved
from 0.80 ± 0.12, 4.65 ± 4.71 mm, and 1.35 ± 1.15 mm of GAN to 0.85 ± 0.18
(p = 0.001,d = 0.71),4.15 ± 7.56 mm (p = 0.002,d = 0.67),and 1.11 ± 1.65 mm
(p < 0.001, d = 0.46) of PRG-GAN, respectively.
Conclusion: Integrating radiomics features into GAN is promising to solve
unclear border limitations and increase the delineation accuracy of GTVp for
patients with NPC.
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1 INTRODUCTION

Nasopharyngeal carcinoma (NPC) is an epithelial carci-
noma arising from the nasopharyngeal mucosal lining,
which is prevalent in Southeast Asia and South China.1

With the advance of radiotherapy, intensity-modulated
radiotherapy (IMRT) and volumetric modulated arc
therapy (VMAT) have become the standard precise
radiotherapy techniques for NPC.2–4 The proximity to
critical neural and other organs demands accurate delin-
eation of primary gross tumor volume (GTVp) to avoid
unnecessary toxicities from radiation.5 Accurate delin-
eation of target volumes is critical in the radiotherapy
treatment planning of NPC, which is usually conducted
manually by radiation oncologists in a treatment plan-
ning system (TPS).6 However, manual delineation of
NPC is time-consuming and labor-intensive. It takes
around 2.7 h on average to manually draw targets for
a single head and neck case,7 and the process is prone
to variations among physicians.8 Therefore, methods of
automatic GTVp segmentation are urgently needed to
relieve oncologists from heavy work and improve the
consistency and accuracy.

Traditionally, automatic segmentation methods based
on atlas, grayscale, and shape have been investigated
for NPC.9–11 The atlas-based method with unsuper-
vised mode is one of the most widely used techniques
in the automatic segmentation of targets or organs
at risk (OARs) in head-and-neck radiotherapy.12 How-
ever, atlas-based methods rely on image registration for
new contours, which results in an inherent weakness
of sensitive to the accuracy of deformable registration
algorithm.13 Grayscale based methods rely on grayscale
difference, which limits their application in NPC due
to a low contrast pair. Shape based methods require
high professional knowledge of users to manually adjust
many parameters, which hinders its widespread clinical
application.14

In the last decade,with the development and achieve-
ment of deep learning (DL) in computer vision process-
ing and medical image analysis,15 convolutional neural
networks (CNNs) have achieved wide applications in
automatic segmentation for many cancers, such as
breast cancer,16 esophageal cancer,17 and NPC.18 DL-
based segmentation methods are mainly divided into 2D
and 3D models. Individual slice analysis with 2D con-
volutions cannot retrieve all useful information and may
affect the segmentation performance.19 On the other
side, 3D CNNs are able to achieve better results using
convolution kernels in three directions to learn inter-slice
information 20.However, the unclear boundary problems

are still not fully addressed in NPC segmentation.21 Sug-
gested methods of specialized network structures or
modules or loss functions, and so forth, are lack of uni-
versality and flexibility.22–24 Increasing data and data
quality need appropriate enhancement techniques and
strategies, and may increase computational costs or
overfitting.25

In recent years, because of the advantages of gener-
ative adversarial network (GAN),26 such as less demand
for training data, good generation effect, and easy
combination with other neural networks, the segmen-
tation methods based on GAN have been increasingly
applied in medical image research.27 Huang et al.28 pro-
posed a GAN with a modified UNet29 integrating with
a Transformer30 as the generator to achieve automatic
segmentation for NPC. The introduction of Transformer
improved the discriminant ability on tumor boundaries.
However, the images were treated as 2D slices instead
of 3D volumes in the experiments. Liu et al.31 proposed
an automatic segmentation network for NPC based on
adversarial learning and UNet to solve the problem of
sample imbalance.Overall, these studies provided some
solutions for NPC segmentation,but the issue of unclear
boundaries has not been well resolved.

With the emergence of radiomics, studies have
demonstrated that radiomics features can character-
ize tumor microstructures and heterogeneity for various
cancers, including NPC.32,33 Specifically, radiomics fea-
tures from peritumoral regions are helpful in describ-
ing tumor heterogeneity and prognostic prediction for
NPC,34 which may provide potential information to
solve the unclear boundary problem. Additionally, stud-
ies demonstrated that introducing additional information
as priori knowledge and solving it pertinently may
provide a deeper understanding of tasks and data
to guide model design and training during automatic
segmentation.35 High accuracy of voxel segmenta-
tion was achieved with comprehensive spatiotemporal
features and radiomics features in the simultaneous
segmentation of myocardial infarction on MRI images
and liver tumor segmentation on CT images without
contrast agents.36,37

In summary, although several studies have explored
the effectiveness of combining radiomics and DL
features in disease classification and segmentation
tasks,36–38 none have directly and systematically inves-
tigated the integration of peritumoral radiomics features
with DL features specifically for segmentation tasks.
This study is the first attempt to validate the feasibility of
integrating radiomics features from peritumoral regions
into GAN to improve the automatic segmentation
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F IGURE 1 Overview of the proposed PRG-GAN. It segments NPC tumors contains three parts: (a) 3D segmentor of receiving guidance
information. (b) Deep learning networks for extracting semantic features. (c) Radiomics features extraction and selection. NPC : nasopharyngeal
carcinoma; PRG-GAN: peritumoral radiomics-guided GAN.

accuracy of GTVp for NPC on CT images. This study is
the first attempt to validate the feasibility of integrating
radiomics features from peritumoral regions into GAN
to improve the automatic segmentation accuracy of
GTVp for NPC on CT images. First, morphological dila-
tion on the initial segmentation results from GAN was
conducted to delineate the annular peritumoral region,
in which radiomics features were extracted as priori
guide knowledge. Then, radiomics features were fused
with semantic features through the discriminator’s fully
connected layer to enhance the model’s discriminatory
ability to identify tumor boundaries,ultimately to achieve
voxel-level classification and segmentation.

2 MATERIALS AND METHODS

2.1 Study design

The workflow and network architecture of the pro-
posed peritumoral radiomics guided GAN (PRG-GAN)
were shown in Figure 1, which includes three steps: (1)
obtaining the optimal architecture of generator and dis-
criminator for GAN among six different combinations;
(2) selecting the most related and stable radiomics fea-
tures to assist the discriminator in classification and
segmentation; (3) developing a radiomics-guided adver-
sarial learning architecture for automatic segmentation

of GTVp for NPC. Basically, relying on the preliminary
segmentation results with GAN,radiomics features were
extracted and screened and then added as priori knowl-
edge into the fully connected layer of the discriminator
to enhance the discriminant ability during automatic
segmentation.

2.2 Patients and imaging data

A total of 552 patients diagnosed as NPC from Authors’
Hospital from January 1 2017 to January 31 2021 were
enrolled and analyzed in this study through search-
ing electronic medical records. The inclusion criteria
are as follows: (1) histologically confirmed as NPC; (2)
without lymph node metastasis and bone metastasis;
(3) with planning CT including nasopharynx and neck.
Patients with low resolution CT images that will affect
the accurate delineation of GTVp were excluded. The
flowchart of patient enrollment was shown in Figure 2.
Finally, a total of 157 patients were enrolled and ran-
domly split into three cohorts: a training cohort (118
patients), a validation cohort (9 patients), and a testing
cohort (30 patients), respectively. A number of 97 to 176
images slices were acquired for NPC patients during CT
scan at 3 mm slice spice with an average resolution of
0.68 mm × 0.68 mm. CT images were acquired with
a standard setting of 120 kV and 100–400 mA with a
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F IGURE 2 Study flow diagram. GAN: Generative Adversarial Network, NPC: nasopharyngeal carcinoma, 3D: three dimensional.

simulator CT of Philips Brilliance (Phillips, USA). GTVp
were delineated by a radiation oncologist with more than
5 years clinical experience and confirmed by another
oncologist with over 20 years of experience.

2.3 Preprocessing and network
architecture selection

CT images were firstly resized to 512 × 512 via bilin-
ear interpolation. The voxel value of each image was
normalized to the range of [0, 1] using min-max nor-
malization. Generator and discriminator are the two
competing modules in the GAN,which interact with each
other and consist of two seamlessly connected net-
works. The input of the generator network (as shown in
Figure 1a) is the ground truth images, which are ran-
domly cropped into a patch of 128 × 128 × 16. The
downsampling gradually reduces the spatial resolution
and increases the semantic dimension to restore the
abstract image representation,and then the upsampling
process restores the detailed information and gradually
restores the precision of images. Residual connections
in a generator can effectively improve the performance
of backpropagation with updated weights to learn bet-
ter and adapt to data.39 In this study, the radiomics
features were combined with high-dimensional seman-
tic features by discriminator to guide the generator
using radiomics-guided adversarial mechanism.36 In
order to obtain the optimal combination of generator

and discriminator for GAN, generators of 3D UNet,40

3D DenseNet,41 3D ResNet,42 and discriminators of
ResNet39 and VGG43 were investigated to determine
the basic architecture of GAN.

These networks were optimized using optimizer
Adam44 with a batch size of 8 and trained in pytorch
v1.11.0 and CUDA v11.3 library on the Ubuntu 16.04.7
LTS 64 bit platform with one Intel Core i7-8700K CPU
@ 3.7 GHz × 12 and one NVIDIA GeForce RTX
2080Ti/PCIe/SSE2 with 11GB GPU memory. All the
models were trained for 600 epochs with a learning
rate of 2 × 10-4 and 2 × 10-6 for the generator and
discriminator, respectively.

2.4 Evaluation metrics

The Dice similarity coefficient (DSC), 95% Hausdorff
distance (HD95), and average symmetric surface dis-
tance (ASSD) were applied to evaluate the performance
of GAN in the segmentation of GTVp.These metrics are
defined as follows.

DSC = 2 |A ∩ B||A| + |B| (1)

DSC is a spatial overlap-based metric that can be
used to assess the spatial overlap between the ground
truth B and the automated segmentation A. The value
of DSC lies in the range of [0, 1], where 0 indicates no



JIN ET AL. 5

spatial overlap between the two segmentation volumes,
and 1 indicates a complete overlap.

ASSD = 1
2

{
mean
b∈Bs

min
a∈As

d (a, b) + mean
a∈As

min
b∈Bs

d (a, b)
}
(2)

HD95 (Bs, As) = max (d95 (Bs, As) , d95 (As, Bs)) (3)

where

d95 (Bs, As) = K95
b∈Bs

(
min
a∈As

‖a − b‖) (4)

HD95 and ASSD describe the mean surface distance
between the ground truth and automated delineation. A
lower value indicates a higher delineation accuracy. For
distance metrics,where Bs and As are the corresponding
surface voxel sets of B and A,d(a, b) and ‖a − b‖ are the
Euclidean distances of the voxel between a and b;dBsAs
describes the point x ∈ Xs that is farthest from any point
of Ys and calculates the distance from x to its nearest
neighbor in Ys.

2.5 Radiomics features extraction and
screening

Patients in the training cohort were used for radiomics
feature screening. A morphologic dilation of 1, 3, 5, and
7 mm was conducted outside of the segmented GTVp
from GAN to generated peritumoral regions. Therefore,
a total of nine ROIs were generated from each sam-
ple, namely, intratumoral ROI (I), annular peritumoral
ROIs of 1, 3, 5, and 7 mm (P1, P3, P5, and P7), intra-
tumoral + peritumoral ROIs of 1, 3, 5 and 7 mm (IP1,
IP3, IP5, and IP7), for radiomics features extraction.
The diagram and examples of the image segmentation
scheme are shown in Figure 3a.A total of 1274 features,
which includes 18 first-order features, 22 Gray-level co-
occurrence matrix (GLCM) features, 16 Gray-level size
zone matrix (GLSZM) features, 16 Gray-level run length
matrix (GLRLM) features,5 Neighbouring Gray Tone Dif-
ference Matrix (NGTDM) features,14 Gray Level Depen-
dence Matrix (GLDM) Features, 455 log-sigma features
and 728 wavelet features, were extracted from each
ROIs using PyRadiomics.45 The recap of the feature
extraction parameters was presented in Table S1.

The process of radiomics features selection was
mainly divided into the following three steps. First, a
pairwise t-test was used to obtain the p-value of each
feature. Then, to eliminate the collinearity between fea-
tures, the Pearson correlation coefficient was calculated
between each pair of features. If the absolute value of
the correlation coefficient was greater than 0.80 and
the p-value was less than 0.05, the feature with the
smaller p-value in the paired t-test was retained. Finally,
the least absolute shrinkage and selection operator

(LASSO) regression with 5-fold cross-validation were
conducted to select optimal features to differentiate
the segmentation results generated by GAN and the
ground truth.Specifically,an additional model combining
the model with the features from the intratumoral ROI
(Table 1: model I) and the model with the features from
the annular peritumoral ROI that showed the best per-
formance (Table 1: one of the models P1-7 and IP1-7)
was constructed to explore whether the classification
performance could be improved. Two machine learning
algorithms, namely support vector machine (SVM)46

and logistic regression (LR),47 were applied to establish
classification models with the data randomly divided
into training and testing sets at a ratio of 7:3 for 100
times. The workflow of feature screening was shown in
Figure S1.

2.6 Radiomics guided adversarial
learning

The semantic features and radiomics features were
integrated into the discriminator of GAN. As shown in
Figure 1b,c, the intratumoral radiomics features were
extracted and screened from the preliminary segmen-
tation results with GAN, peritumoral radiomics features
were obtained from the perform morphological dilation
regions around the preliminary segmentation results.
The semantic features were mapped to the same num-
ber as the screened radiomics features through a
fully connected layer. The output of discriminator was
obtained by feeding the concatenation of the seman-
tic features and radiomics features to another fully
connected layer. Then these results continuously opti-
mized hyperparameters through the back propagation
of the discriminator loss function, and finally extracted
more representative depth features under the guid-
ance of radiomics.With learning through this adversarial
strategy, a more excellent model can be trained.

2.7 Ablation and comparative
experiments

In this paper, two experiments were designed to illus-
trate the advantages of the proposed method. First,
an ablation experiment was conducted to demonstrate
the effectiveness of peritumoral radiomics features in
DL segmentation. Specifically, an adversarial learning
strategy was first removed from GAN to obtain a GAN
without a discriminator (GAN w/o D). Subsequently, the
intratumoral and annular peritumoral radiomics features
were added to the GAN, resulting in the intratumoral
radiomics-guided GAN (IRG-GAN) and the PRG-GAN,
respectively. Finally, the performance of the proposed
model was compared with that of five currently popular
3D segmentation models.
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F IGURE 3 (a) Schematic illustration of the intratumoral and peritumoral ROIs and examples of the image segmentation scheme. (b)
Results of violin plots for different combinations of input generator and discriminator. (c, d) Areas under the receiver operating characteristic
curve (AUCs) of the ten radiomics models in the testing set. C, Combined model; DSC, Dice similarity coefficient; I, Intratumor; IP1,
Intratumoral + peritumoral ROI of 1 mm; IP3, Intratumoral + peritumoral ROI of 3 mm; IP5, Intratumoral + peritumoral ROI of 5 mm; IP7,
Intratumoral + peritumoral ROI of 7 mm; LR, logistic regression; P1, Annular peritumoral ROI of 1 mm; P3, Annular peritumoral ROI of 3 mm; P5,
Annular peritumoral ROI of 5 mm; P7, Annular peritumoral ROI of 7 mm; ROI, regions of inSterest; SVM, support vector machine.
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TABLE 1 Mean values of area under curve (AUC) of the receiver operating characteristic curve of the test set (71 samples) for radiomics
models.

LR SVM

Radiomics models Mean ± SD 95% CI p-value
Cohen’s
d Mean ± SD 95% CI p-value

Cohen’s
d

Intratumor (I) 0.70 ± 0.06 (0.69–0.71) – – 0.68 ± 0.05 (0.67–0.69) – –

Annular peritumoral ROI of
1 mm (P1)

0.78 ± 0.04 (0.77–0.79) < 0.001 1.65 0.77 ± 0.05 (0.76–0.78) < 0.001 1.80

Annular peritumoral ROI of
3 mm (P3)

0.81 ± 0.04 (0.79–0.81) < 0.001 2.18 0.81 ± 0.04 (0.80–0.82) < 0.001 2.65

Annular peritumoral ROI of
5 mm (P5)

0.78 ± 0.04 (0.77–0.79) < 0.001 1.94 0.78 ± 0.04 (0.77–0.79) < 0.001 2.21

Annular peritumoral ROI of
7 mm (P7)

0.74 ± 0.05 (0.73–0.75) < 0.001 0.89 0.74 ± 0.05 (0.73–0.75) < 0.001 1.10

Intratumor + peritumoral
ROI of 1 mm (IP1)

0.67 ± 0.06 (0.66–0.68) 0.025 0.45 0.66 ± 0.06 (0.65–0.67) 0.070 0.41

Intratumor+peritumoral
ROI of 3 mm (IP3)

0.69 ± 0.05 (0.68–0.70) 0.284 0.16 0.69 ± 0.05 (0.68–0.70) 0.867 0.07

Intratumor+peritumoral
ROI of 5 mm (IP5)

0.68 ± 0.05 (0.67–0.68) 0.016 0.45 0.67 ± 0.05 (0.66–0.68) 0.154 0.28

Intratumor+peritumoral
ROI of 7 mm (IP7)

0.72 ± 0.05 (0.71–0.73) 0.050 0.42 0.72 ± 0.05 (0.71–0.73) < 0.001 0.78

Combined model: I + P3 0.80 ± 0.05 (0.79–0.81) < 0.001 1.97 0.80 ± 0.05 (0.79–0.81) < 0.001 2.31

Note: The bold statements represent the best results numerically. The reference base is Intratumor (I), the number of comparisons is 9, *differences were significant
at p < 0.006 (0.05/9) corrected with Bonferroni’s method.
Abbreviations: CI, confidence interval; LR, logistic regression; ROI, region of interest; SD, standard deviation; SVM, support vector machine.

2.8 Constraint strategy of PRG-GAN

The basic adversarial learning strategy of the proposed
PRG-GAN is coming from the minimax game between
generator and discriminator in the primary GAN,in which
the minimax optimization is formulated as:

min
G

max
D

GAN (G, D) = Ey∼pdata(y) [log D (y)]

+ Ex∼px(x)[log (1 − D (G (x))] (5)

where, G and D means the generator and discrimi-
nator, GAN(G, D) is the loss function of GAN. In other
words, G and D play the minimax game with the loss
function of GAN(G, D). The pdata(y) corresponds to the
label of segmentation y and px(x) is the distribution of
input noise for the G. log D(y) and log(1 − D(G(x)) are
the logarithmic forms of the D outputs for real and
generated samples, respectively. G(x) corresponds to
the prediction ŷ. PRG-GAN was trained to minimize the
probability of ŷ to be recognized while maximizing the
probability of making mistakes of the discriminator when
discriminating the ŷ. Studies showed that combining
GAN losses with more traditional losses can effectively
reduce ambiguity.48,49 An additional Dice loss function
Dice and a cross entropy loss function CE were added
in the generator to obtain tumor segmentation loss
function SEG, which is defined as:

Seg = 𝛼Dice + (1 − 𝛼)CE (6)

where:

Dice (y, ŷ) = 1 −
2
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi + 𝜖

(7)

CE (y, ŷ) = −(ylog (ŷ) + (1 − y) log (1 − ŷ)) (8)

Here yi is the real voxel value and ŷi is the predicted
voxel value. 𝑁 is the total number of voxels, and 𝜖 is a
small constant to avoid division by zero.

2.9 Statistical analysis

All statistical analysis was performed with the SPSS
software package (Version 26.0, IBM SPSS Inc). Cat-
egorical variables for the combined training-validation
and testing cohorts were compared using the χ2 test;
numeric variables were compared using the Mann-
Whitney U test. If the data were normally distributed,
the paired t-test was performed;otherwise, the Wilcoxon
Signed-Rank Test for Paired Samples non-parametric
test was performed, and Cohen’s d (d) effect sizes were
calculated to quantify the observed difference between
two sets of data. The criteria used were: 0.2 for small,
0.5 for medium, and 0.8 for large effects.50 Numeric
variables were denoted as mean ± standard deviation.
The Wilcoxon rank-sum test with Bonferroni correction
and the Kruskal-Wallis rank-sum test was used to



8 JIN ET AL.

TABLE 2 Clinical and tumor characteristics.

Characteristic
Entire cohort
(n = 157)

Training-validation
cohort(n = 127) Test cohort (n = 30) p-value

Sex … … … 0.638

Male 126 (80.25%) 101 (79.53%) 25 (83.33%) …

Female 31 (19.75%) 26 (20.47%) 5 (16.67%) …

Age … … … 0.712

Overall age (years) 55.20 ± 11.84 (24–81) 55.15 ± 11.63 (28–81) 55.43 ± 12.90 (24–79) …

< 30 y 3 (1.91%) 1 (0.79%) 2 (6.66%) …

30–60 y 98 (62.42%) 82 (64.57%) 16 (53.33%) …

≥ 60 y 56 (35.67%) 44 (34.64%) 12 (40.01%) …

Tumor characteristic … … …

Number of tumor slices
per case

12 (3–34) 12 (4–24) 13 (3–34) 0.564

Primary GTV (mL) 36.83 ± 25.67
(4.24–120.74)

36.72 ± 24.09
(4.24–120.74)

37.31 ± 31.98
(6.33–116.52)

0.492

Abbreviation: GTV, gross tumor volume.

compare the mean areas under the receiver operating
characteristic (ROC) curve (AUCs) of each kind of ROI.
A two-sided p-value of less than 0.05 was considered
statistically significant. The multiple comparisons were
corrected using the Bonferroni method to decrease the
risk of a type I error.51

𝛼′ = 𝛼

k
(9)

where 𝛼 is the level of type I error of each single test,
most often takes 0.05.k denotes the number of compar-
isons, and 𝛼′ stands for the corrected significance level.

3 RESULTS

3.1 The demographic and clinical
characteristics of the participants

A total of 157 NPC patients were enrolled with a mean
age of 55.20 ± 11.84 years (ranging from 24 to 81
years),of which 80.25% (126/157) were male,as shown
in Table 2. The volume of GTVp ranged from 4.24
to 120.74 cm3 (mean 36.83 ± 25.67 cm3). No signifi-
cant differences in the clinical variables were observed
among the training, validation cohorts and testing
cohort.Detailed characteristics of enrolled patients were
shown in Table 2.

3.2 The segmentation performance of
different GAN combinations

The quantitative performance of the proposed DL
models in test cohorts was summarized in Table 3
with consistent training epochs among these models.

The combination of 3D ResNet and ResNet achieved
an average DSC, HD95, and ASSD of 0.80 ± 0.12,
4.65 ± 4.71 mm, and 1.35 ± 1.15 mm, respectively.
Except for the HD95 metric of 3D ResNet + VGG
combination (p = 0.438, d = 0.21), other combination
models demonstrated a significant difference in compar-
ison with the baseline model of 3D ResNet + ResNet
(all p-values < 0.01, all d > 0.5). The violin plots corre-
sponding to the DSC values of segmentation results of
different combinations were shown in Figure 3b, which
visually reflect the segmentation performance of the
combinations (all p-values < 0.01, represented by five
lines in Figure 3b).

3.3 The performance of radiomics
models in different regions

Radiomics features screened after paired t-test,Pearson
correlation analysis, and LASSO for different com-
binations along with their frequency of occurrence
were summarized in Table S3–11. After re-splitting the
whole dataset 100 times, the mean AUC values for
10 radiomics models in distinguishing segmentation
results generated by GAN and ground truth were shown
in Table 1. Model P3 constructed using the features
from the annular peritumoral ROI of 3 mm showed
good overall classification performance in the testing
sets with an AUC of 0.81 ± 0.04 (95% confidence
interval (CI) 0.79–0.81) and 0.81 ± 0.04 (95% CI 0.80–
0.82) for LR and SVM, respectively. The performance
of the models constructed by the features from the
annular peritumoral ROI (Table 1: models P1–7) was
good, with all AUCs greater than 0.74 in the testing
set.

However, Except for model IP7 which achieved an
AUC value of 0.72, all other models constructed by
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TABLE 3 Accuracy comparison for model-generated GTVp in the testing cohorts by different combinations.

DSC ↑ HD95 ↓ ASSD ↓

Model Values p-value Cohen’s d values p-value Cohen’s d Values p-value Cohen’s d

3D ResNet + ResNet 0.80 ± 0.12 – – 4.65 ± 4.71 – – 1.35 ± 1.15 – –

3D ResNet + VGG 0.78 ± 0.14 0.002* 0.55 4.94 ± 5.95 0.438 0.21 1.41 ± 1.12 0.005* 0.57

3D UNet + ResNet 0.76 ± 0.14 < 0.001* 1.06 6.44 ± 8.13 < 0.001* 0.83 1.82 ± 1.66 < 0.001* 1.16

3D UNet + VGG 0.75 ± 0.14 < 0.001* 1.05 6.54 ± 6.73 < 0.001* 0.55 1.74 ± 1.34 < 0.001* 0.75

3D DenseNet + ResNet 0.69 ± 0.13 < 0.001* 1.10 8.94 ± 7.08 < 0.001* 0.98 2.37 ± 1.36 < 0.001* 1.26

3D DenseNet + VGG 0.70 ± 0.12 < 0.001* 0.84 7.77 ± 6.01 < 0.001* 0.83 2.18 ± 1.15 < 0.001* 0.97

Note: The bold statements represent the best results numerically. The reference base is 3D ResNet + ResNet, and the number of comparisons is 5, *differences were
significant at p < 0.01 (0.05/5) corrected with Bonferroni’s method.
Abbreviations: ASSD, average symmetric surface distance; DSC, Dice similarity coefficient; GAN, generative adversarial network; GTVp, primary gross tumor volume;
HD95, 95% Hausdorff distance; PRG-GAN: peritumoral radiomics-guided GAN.

TABLE 4 Quantitative results of the ablation experiment on the test set (30 patients).

DSC ↑ HD95 ↓ ASSD ↓

Method Values p-value Cohen’s d Values p-value Cohen’s d Values p-value Cohen’s d

GAN 0.80 ± 0.12 – – 4.65 ± 4.71 – – 1.35 ± 1.15 – –

GAN w/o D 0.80 ± 0.17 0.504 0.14 4.82 ± 7.86 0.374 0.09 1.28 ± 1.67 0.229 0.17

IRG-GAN 0.82 ± 0.19 0.008* 0.27 4.68 ± 8.00 0.059 0.20 1.34 ± 1.66 0.002* 0.29

PRG-GAN 0.85 ± 0.18 0.001* 0.71 4.15 ± 7.56 0.002* 0.67 1.11 ± 1.65 <0.001* 0.46

Note: The bold statements represent the best results numerically. The reference base is GAN, and the number of comparisons is 3, *differences were significant at
p < 0.017 (0.05/3) corrected with Bonferroni’s method.
Abbreviations:ASSD,average symmetric surface distance;DSC,Dice similarity coefficient;GAN,generative adversarial network;GAN w/o D:GAN without discriminator;
GTVp, primary gross tumor volume; HD95, 95% Hausdorff distance; IRG-GAN: intratumoral radiomics-guided GAN; PRG-GAN: peritumoral radiomics-guided GAN.

the features from the intratumoral + peritumoral ROI
(Table 1: models IP1–7) did not show satisfactory per-
formance, with all AUCs lower than 0.70 in the testing
set. As shown in Figure 3c,d the visualized results using
LR and SVM indicate that all annular peritumoral ROI
models (Table 1:models P1-7) and the combined model
have achieved significantly higher AUCs than model I (all
p-values < 0.006,as shown at the bottom of Figure 3c,d,
all d > 0.8).

3.4 The segmentation performance of
the ablation study

To verify the contributions of radiomics, an adversarial
learning strategy was first removed from GAN to obtain
GAN w/o D. The segmentation performance did not
change significantly (DSC: 0.80 ± 0.12 vs. 0.80 ± 0.17,
p = 0.504, d = 0.14; HD95: 4.65 ± 4.71 vs. 4.82 ± 7.86,
p = 0.374, d = 0.09; ASSD: 1.35 ± 1.15 vs. 1.28 ± 1.67,
p = 0.229, d = 0.17). Then the intratumoral and the
annular peritumoral ROI of 3 mm radiomics features
were added to GAN to obtain the IRG-GAN and the
PRG-GAN, respectively. The quantitative results (6th
row in Table 4) showed that the segmentation per-
formance of PRG-GAN increased more significantly
and achieved an average DSC, HD95, and ASSD of
0.85 ± 0.18 (d = 0.71), 4.15 ± 7.56 mm (d = 0.67),
and 1.11 ± 1.65 mm (d = 0.46), respectively (all
p-values < 0.017).

For visual comparison, the segmentation results of
each method were showed in Figure 4. In the first and
second examples, the tumor had a well-defined shape
with a distinguishable border for easy segmentation.
The third and fourth examples were more challenging
than the first two. In the third example, the tumor was
unshapely. In the fourth example, the tumor was sur-
rounded by low contrast tissues.Additionally,both exam-
ples had a small volume. The four models were found
to accurately segment the tumors in the first and sec-
ond examples. Thus, the obtained contours fit well with
the ground truth. In the third example, GAN mistakenly
segmented the tumor. The error was partially corrected
by combining intratumoral radiomics to obtain IRG-GAN.
However, there were mistakes remained. By using peri-
tumoral radiomics, PRG-GAN perfectly segmented the
suspicious tumor. In the fourth example, GAN was able
to determine the overall contours. Although IRG-GAN
further refined the contours, the segmentation results
of the proposed PRG-GAN were more consistent with
the labeled results. The experiments demonstrated that
the proposed PRG-GAN achieved the best visualization
results compared with other methods.

3.5 Comparison with current popular
methods

As shown in Table 5, PRG-GAN combined with
radiomics features from P3 achieved a best average
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F IGURE 4 Four examples of the comparison of segmentation results from the proposed PRG-GAN, IRG-GAN, GAN w/o D, and GAN. GAN,
generative adversarial network; GAN w/o D, GAN without a discriminator; IRG-GAN, intratumoral radiomics-guided GAN; PRG-GAN, peritumoral
radiomics-guided GAN.

TABLE 5 Quantitative measurements on six segmentation methods.

DSC ↑ HD95 ↓ ASSD ↓

Method Values p-value Cohen’s d Values p-value Cohen’s d Values p-value Cohen’s d

3D-UNet40 0.76 ± 0.13 < 0.001* 1.27 6.39 ± 7.06 < 0.001* 0.44 1.70 ± 1.30 < 0.001* 0.81

3D-Vnet52 0.76 ± 0.13 0.001* 0.87 7.30 ± 8.68 < 0.001* 0.70 1.69 ± 1.39 < 0.001* 0.90

3D-ResUNet 0.76 ± 0.14 < 0.001* 0.83 5.82 ± 6.49 < 0.001* 0.43 1.56 ± 1.34 < 0.001* 0.71

3D-DenseNet41 0.67 ± 0.14 < 0.001* 0.92 10.80 ± 11.89 < 0.001* 0.77 2.56 ± 2.08 < 0.001* 0.89

3D-Dense-VoxNet53 0.70 ± 0.12 < 0.001* 1.16 11.85 ± 14.46 < 0.001* 0.54 2.74 ± 2.29 < 0.001* 0.71

PRG-GAN 0.85 ± 0.18 – – 4.15 ± 7.56 – – 1.11 ± 1.65 – –

Note: The bold statements represent the best results numerically. The reference base is PRG-GAN, and the number of comparisons is 5, *Differences were significant
at p < 0.01(0.05/5) corrected with Bonferroni’s method.
Abbreviation: ASSD, average symmetric surface distance; DSC, Dice similarity coefficient; HD95, 95% Hausdorff distance; PRG-GAN: peritumoral radiomics-guided
GAN.

DSC, HD95, and ASSD of 0.85 ± 0.18, 4.15 ± 7.56 mm,
and 1.11 ± 1.65 mm, respectively, which was signif-
icantly higher than those of other DL methods (all
p-values < 0.01, all d > 0.4). The segmentation results
on the four difficult cases after different methods were
visualized in Figure 5. In the first and second examples,
the tumor borders were unclear, and the volumes were
small. In the third and fourth images, the tumor contrast
was weak and the shapes were irregular.PRG-GAN also
achieved the best visualization results, and its predicted
contours fitted well with the ground truth. In comparison,
other methods segmented the tumor mistakenly,and the

obtained segmentation failed to overlap with the labeled
truth significantly.

4 DISCUSSION

In this work, a novel PRG-GAN model integrating peri-
tumoral radiomics features with GAN was proposed for
the robust delineation of GTVp for NPC on planning CT
images. The peritumoral radiomics features and deep
semantic features were concatenated in the fully con-
nected layer of the discriminator of GAN to improve
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F IGURE 5 Comparative results on NPC segmentation after different 3D segmentation models. NPC, nasopharyngeal carcinoma

the model’s ability of learning high discriminative fea-
tures from tumors from CT images. In the design of
PRG-GAN architecture, 3D convolution kernels instead
of 2D were adopted to learn deep semantic features to
capture slide to slide tumor connectivity. The average
DSC,HD95,and ASSD were significantly improved from
0.80 ± 0.12, 4.65 ± 4.71 mm, and 1.35 ± 1.15 mm of
GAN to 0.85± 0.18 (p= 0.001,d= 0.71),4.15± 7.56 mm
(p = 0.002, d = 0.67), and 1.11 ± 1.65 mm (p < 0.001,
d = 0.46) of PRG-GAN, respectively.

DL models have been widely applied for the delin-
eation of GTVp for NPC and other solid tumors.18,54

In this study, different combinations of generators and
discriminators in GAN were investigated for the GTVp
delineation for NPC. As shown in Table 3, 3D DenseNet
and 3D UNet combined with VGG and ResNet achieved
a DSC ranging from 0.69 to 0.76, which was close to
the reported DSC from 0.72 to 0.74 of 2D, 2.5D, and
3D UNet in the delineation of GTVp for NPC.55–57 Using
3D ResNet as the generator and ResNet as the dis-
criminator achieved the best DSC, HD95, and ASSD of
0.80 ± 0.12, 4.65 ± 4.71 mm, and 1.35 ± 1.15 mm,
respectively.Similarly,Men et al.58 achieved a mean DSC
of 0.81 and 0.62 for GTVp and metastatic lymph nodes
(GTVnd) with a deep deconvolutional neural network,
respectively. As shown in Table 3, when the generator
3D ResNet was fixed, not all metrics showed signifi-
cant improvement when the discriminator was replaced
from VGG to ResNet (DSC: 0.80 ± 0.12 vs. 0.78 ± 0.14,
p = 0.002, d = 0.55; HD95: 4.65 ± 4.71 vs. 4.94 ± 5.95,
p = 0.438, d = 0.21; ASSD: 1.35 ± 1.15 vs. 1.41 ± 1.12,
p = 0.005, d = 0.57). Among them, the improvement in
the HD95 metric was not significant (p = 0.438) with
only a small effect size (d = 0.21). Therefore, when the

segmentation performance of the generator tends to
saturate, hard to improve the performance with different
discriminators.

Radiomics has been demonstrated to be able
to quantitatively evaluate the quality of automatic
delineation.59,60 Specifically, Liu et al.61 developed a
radiomics-based quality control system to predict DSC
scores for automatic cardiac segmentation at both the
2D and 3D models. In this study, ten radiomics mod-
els were generated with radiomics features extracted
from intratumoral and peritumoral regions to evaluate
the delineation results from GAN. As shown in Table 1,
peritumoral radiomics models (Table 1, models P1-
7) significantly outperform the intratumoral radiomics
model (Table 1, models I) in the evaluation of GAN
segmentation (all p-values < 0.006),and these improve-
ments showed large effect sizes (all d > 0.8). This
indicated that radiomics features from the peritumoral
region were more valuable for automatic segmenta-
tion evaluation. On the other hand, the combined model
did not improve performance significantly than the
model P3 did (LR: 0.80 ± 0.05 [95% CI 0.79–0.81] vs.
0.81 ± 0.04 [95% CI 0.80–0.82]; SVM: 0.80 ± 0.05
[95% CI 0.79–0.81] vs.0.81 ± 0.04 [95% CI 0.80–0.82]).
Therefore, introducing the features of the annular per-
itumoral region of 3 mm into GAN may maximize the
segmentation performance.

The value of radiomics in delineation was further eval-
uated in this study by combining radiomics features from
different regions with GAN for GTVp delineation. As
shown in Table 4, the adversarial learning strategy had
no impact on segmentation performance because there
was no statistical difference between the results of GAN
and GAN w/o D (all p-values > 0.017) with small effect
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sizes (all d < 0.2). Then the intratumoral radiomics fea-
tures were added to GAN to obtain IRG-GAN. Although
all metrics showed statistical improvement except for the
HD95 metric (4.65 ± 4.71 vs. 4.68 ± 8.00, p = 0.059),
all comparisons only had small to medium effect sizes
(DSC: d = 0.27; HD95: d = 0.20; ASSD: d = 0.29). In
contrast, the results demonstrated that introducing peri-
tumoral radiomics features into GAN can further improve
their delineation performance as shown in Table 4 that
the performance of PRG-GAN was significantly better
than GAN (DSC: 0.85 ± 0.18 vs. 0.80 ± 0.12, p = 0.001,
d = 0.71; HD95: 4.15 ± 7.56 vs. 4.65 ± 4.71, p = 0.002,
d = 0.67; ASSD: 1.11 ± 1.65 vs. 1.35 ± 1.15, p < 0.001,
d = 0.46), the practical effect sizes were from medium to
large. Cohen’s d effect sizes between the model PRG-
GAN and GAN were higher than those between the
IRG-GAN and GAN (DSC: 0.71 vs. 0.27; HD95: 0.67 vs.
0.20; ASSD: 0.46 vs. 0.29). A possible reason was that
there may be significant information overlap between
intratumoral radiomics features and the DL features
within the tumor,whereas peritumoral radiomics features
can provide additional complementary information.

Table 5 shows the results of comparing our method
with the current popular methods for 3D medical image
segmentation. Among Cohen’s d effect sizes across
three metrics, the improvement in the DSC metric rep-
resents large effect sizes (all d > 0.8), while the ASSD
metric improvement demonstrates medium or large
effect sizes (all d > 0.5). The enhancement in the
HD95 metric, though relatively modest, also represents
close to or greater than medium effect sizes (0.4 < all
d < 0.8). Furthermore, the performance of PRG-GAN
significantly surpasses that of other DL methods across
all metrics listed in Table 5 (all p-values < 0.01).Figure 5
also shows that our method significantly outperforms the
other compared methods.

This study had several limitations. First, the proposed
PRG-GAN was conducted on CT images and only GTVp
was investigated for the PRG-GAN delineation. Other
target volumes, such as GTVnd, PTV should be fur-
ther investigated with PRG-GAN in the future. Studies
demonstrated that MRI images have superior soft-tissue
contrast than CT images,62 which is usually combined
with CT images in NPC targets delineation in clinical
practice. The combined use of FDG PET and MRI can
comprehensively depict the pattern of nodal metasta-
sis in NPC patients.63 It is of great clinical significance
to extract radiomics features from CT, MRI, and FDG
PET to generate a radiomics features guided GAN for
NPC delineation in the coming future. Another limita-
tion of this study is that the number of samples is
relatively small and from a single center. In the future,
collecting more data from multiple institutions to improve
the robustness and accuracy of the model is neces-
sary with attempt to develop strong algorithms, such as
transformer-based models.64

5 CONCLUSIONS

In summary, peritumoral radiomics features were inte-
grated into GAN to improve the accuracy of GTVp
segmentation for NPC on planning CT images. Our
findings demonstrated that peritumoral radiomics fea-
tures can effectively improve contouring performance
in adversarial learning strategy. It is promising to add
radiomics features into GAN to solve unclear border
limitation during GTVp delineation for patients with NPC.
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