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A B S T R A C T   

Background: Recent cannabis use (RCU) exerts adverse effects on the brain. However, the effect of RCU on 
structural covariance networks (SCNs) is still unclear. This retrospective cross-sectional study aimed to explore 
the effects of RCU on SCNs in young adults in terms of whole cerebral cortical thickness (CT) and cortical surface 
area (CSA). 
Methods: A total of 117 participants taking tetrahydrocannabinol (RCU group) and 896 participants not using 
cannabis (control group) were included in this study. All participants underwent MRI scanning following uri-
nalysis screening, after which FreeSurfer 5.3 was used to calculate the CT and CSA, and SCNs matrices were 
constructed by Brain Connectivity Toolbox. Subsequently, the global and nodal network measures of the SCNs 
were computed based on these matrices. A nonparametric permutation test was used to investigate the group 
differences by Matlab. 
Results: Regarding global network measures of CT, young adults with RCU exhibited altered small-worldness (P 
= 0.020) and clustering coefficient (P = 0.031) compared to controls, whereas there were no significant group 
differences in terms of SCNs constructed with CSA. Additionally, SCNs based on CT and CSA displayed abnormal 
nodal degree, nodal efficiency, and nodal betweenness centrality in vital brain regions of the triple network, 
including the dorsolateral and ventrolateral prefrontal cortex, and anterior cingulate cortex. 
Conclusion: The effects of RCU on brain structure in young adults can be detected by SCNs, in which structural 
abnormalities in the triple network are dominant, indicating that RCU can be detrimental to brain function.   

1. Introduction 

The use of cannabis is rising globally; currently, 209 million cannabis 
users are reported worldwide, which is approximately twice the number 
reported at the beginning of the 2000s (Davis et al., 2018). Young adults 
(18–25 years old) exhibit the highest prevalence of cannabis use, which 
can be attributed to the legalization of the drug in certain regions and 
clinical research encouraging cannabis consumption (Mullins, 2013). 
While short-term cannabis use can provide euphoria or pain relief 
(Bonn-Miller et al., 2014), it can also increase the risk of psychosis 
significantly in adolescents (Tao et al., 2020). Previous research has 
found that the effects of cannabis on brain development in adolescents 
cause these neurological side effects (Zehra et al., 2018), which may be 
related to the main component of cannabis, tetrahydrocannabinol 
(THC), interacting with receptors of the endogenous cannabinoid 

signaling system, in turn leading to structural impairment of the brain 
(Zehra et al., 2018). 

Prior research has indicated that widespread brain regions contain-
ing a dense density of cannabinoid receptor 1 (CB1), including the 
hippocampus, amygdala, cerebellum, cingulate cortex, and prefrontal 
cortex, are predominantly affected when adolescents are exposed to 
THC (Scott et al., 2019), and these regions are key components of the 
reward or emotional networks (Lorenzetti et al., 2019). Our previous 
longitudinal study revealed that the right hippocampus in young adults 
with cannabis use developed slowly related to that in controls (Xu et al., 
2022). Additionally, gray matter volume of the orbitofrontal cortex was 
smaller in young cannabis users (Battistella et al., 2014; Price et al., 
2015). However, a meta-analysis suggests that the structural brain ab-
normalities in cannabis users are currently not consistent (Lorenzetti 
et al., 2019), with the possible causes of focusing only on isolated brain 
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regions, lacking of structural networks analysis, and single brain struc-
ture calculation method, all of which may lead to a narrower range of 
results without overall alteration of brain networks (Lorenzetti et al., 
2019). 

Further, the effect of recent cannabis use (RCU) on the human brain 
has been the subject of few studies. Individuals with RCU are defined as 
those with a positive cannabinoid urine screening test (THC + ), spe-
cifically, one and three days after a single use or three to four weeks on 
average for heavy users (Musshoff & Madea, 2006). Thus, the selection 
of young adult RCUs contributes to the estimation of the impact of early 
cannabis use on brain structure. Further, to explore the structural al-
terations in the brains of young adult cannabis users, the structural 
covariance networks (SCNs) is an effective approach that focuses on 
covariate coordinated structures of the whole brain in gray matter 
morphology rather than one specific structure (Gong et al., 2012). SCNs 
can usually be constructed from cortical surface area (CSA) and cortical 
thickness (CT), CSA reflects the unfolding of cerebral cortex, and CT 
reflects the density and distribution of neuron cells(Winkler et al., 
2018), which jointly comprise gray matter volume, with the advantage 
that CSA or CT may appear abnormal when no abnormality is detected 
in gray matter volume (Ducharme et al., 2016; Winkler et al., 2018). 
Moreover, because of distinct cellular regulatory mechanisms in CSA or 
CT, their responses to particular factors affecting the brain may differ 
(Evans, 2013). In addition, brain networks can provide information 
about interregional connectivity and can be used to distinguish whether 
functional networks are receiving effects based on changes of graph 
theory metrics, this can balance the network in whole and its nodes 
(Nestor et al., 2020), which can help to complement the gray matter 
changes which have been reported. However, no research has been re-
ported in this direction. 

Hence, this study constructed SCNs using CT and CSA from the 
Human Connectome Project (HCP) imaging data to calculate separation 
and integration network graph theory metrics in young adults with RCU. 
This study aimed to (i) detect regions of whole-brain SCNs abnormality 
in young adults with RCU compared to non-cannabis users and (ii) 
identify abnormal network architectures of whole-brain SCNs in young 
adults with RCU. 

2. Methods 

2.1. Participants 

This study used the HCP Release S1200 dataset. Participants were 
recruited at Washington University in St. Louis over two days between 
August 2012 and October 2015 (Van Essen et al., 2013, Van Essen et al., 
2012). The research ethics board of each institution approved the study 
protocols. This study was conducted in accordance with the Declaration 
of Helsinki, and all participants provided written informed consent. All 
the participants were young adults aged 22–35 years. The exclusion 
criteria were as follows: history of psychiatric disorder, substance abuse, 
neurodevelopmental disorder or damage, cardiovascular disease, severe 
health conditions (diabetes, multiple sclerosis, cerebral palsy, and pre-
mature birth), or magnetic resonance imaging (MRI) contraindications 
(large tattoos, non-removable piercings, metal devices in the body, and 
claustrophobia). The complete details of the inclusion and exclusion 
criteria and informed consent for participants can be found in references 
(Van Essen et al., 2013; Van Essen et al., 2012). There were totally 1206 
participants from HCP, but 193 participants were omitted from subse-
quent analyses because of missing structural MRI (sMRI) scans (93), 
insufficient data on cannabis use (15), or for any covariates (85). Finally, 
1013 participants were included in the final analysis (Table 1). 

On the day of testing, participants underwent a urine drug screen to 
determine whether they had been recently exposed to THC, a psycho-
active constituent of cannabis. The THC + status was adopted to indicate 
whether or not participants tested positive for the presence of THC in 
their urine.For heavy users, detection occurs 1–3 days after a single use 

and 3–4 weeks on average, whereas certain individuals may exhibit 
detectability even three months later (Musshoff & Madea, 2006). A total 
of 117 participants in this study exhibited THC + status, indicating that 
they were young adults with RCU; the remaining 896 participants with 
THC- status were regarded as controls. 

2.2. Retrospective report of tobacco and alcohol use 

A retrospective report on tobacco and alcohol use was obtained. 
From this, the total drinks consumed in the past seven days, frequency of 
alcohol use in the past 12 months, and total times used/smoked tobacco 
in the past seven days were derived to use as covariates. 

2.3. MRI data acquisition and preprocessing 

In the HCP dataset, T1-weighted structural images were collected 
using a 32-channel head coin on a 3 T Siemens Skyra scanner (Siemens 
AG, Erlanger, Germany) with the following scanning parameters: 
isotropic resolution = 0.7 mm3, field of view = 224 mm × 240 mm, 
matrix size = 320 × 320, repetition time = 2400 ms, echo time = 2.14 
ms, inversion time = 1000 ms, flip angle = 8◦, and 256 sagittal slices. 
Data were reconstructed and preprocessed using a modified version of 
the FreeSurfer pipeline in FreeSurfer Image Analysis Suite version 5.3 
(https://surfer.nmr.mgh.harvard.edu) (Fischl; Fischl, 2012). 

For details of the acquisition parameters, reconstruction, and pre-
processing of the HCP sMRI data, see references (Glasser et al., 2013; 
Van Essen et al., 2013, Van Essen et al. (2012)). Briefly, the FreeSurfer 
pipeline processing involved several steps, including motion correction, 
removal of non-brain tissue, Talairach transformation, intensity 
normalization, gray/white matter boundary tessellation, topology 
correction, surface deformation, registration to a common spherical 
atlas, and cortical surface reconstruction. All structural images were 
reviewed by a technician immediately after acquisition to ensure that 
the scans had no significant problems (artifacts and substantial 

Table 1 
Demographic characteristics of young adults with RCU and controls from HCP 
dataset in this study.  

Characteristic Groups Statistics 

Young adults 
with RCU 
(N = 117) 

Controls 
(N = 896) 

t/χ2 P- 
value 

Age 28.06(3.83) 28.92 
(3.63) 

t145 =

-2.31 
0.27 

Gender (F/M) 38/79 508/388 χ2
1 =

23.46 
0.00 

BMI 26.59(5.52) 26.48 
(5.07) 

t145 =

0.19 
0.84 

Education 13.51(1.86) 15.13 
(1.71) 

t145 =

-8.89 
0.00 

Total cognitive compositive 101.12(21.40) 115.22 
(19.67) 

t145 =

-6.77 
0.00 

Total household income 3.61(2.13) 5.24(2.08) t145 =

-7.82 
0.00 

Total_Drinks_7days 8.06(10.08) 4.72(6.67) t145 =

3.48 
0.00 

Frq_Alc_12months 3.82(1.69) 4.36(1.52) t145 =

-3.37 
0.00 

Total_Any_Tobacco_7days 24.49(37.08) 5.80 
(21.56) 

t145 =

5.33 
0.00 

Note. Demographics presented as mean (standard deviation) unless otherwise 
stated. 
HCP: Human Connectome Project; RCU: recent cannabis use (positive test for 
THC); Total cognition composite is derived by combining scores on the indi-
vidual tests in the NIH Toolbox, the age-adjusted version of the Total Cognition 
Composite was adopted here as participants’ cognitive ability; F: Female; M: 
Male; BMI: Body mass index; Total_Drinks_7days: Total drinks in past 7 days; 
Frq_Alc_12months: Frequency of any alcohol use in past 12 months; Total_-
Any_Tobacco_7days: Total times used/smoked any tobacco in past 7 days. 
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movement). For a detailed explanation of HCP quality control, check 
reference (Marcus et al., 2013). The quantitative measures of CT and 
CSA for cortical regions were defined using the Desikan atlas (Desikan 
et al., 2006). 

2.4. Construction of SCNs 

The statistical similarity between each two regions defined by the 
Desikan atlas was measured by computing Pearson’s correlation coef-
ficient across subjects, and an interregional correlation matrix (68 × 68) 
was constructed from each group. Therefore, group-level SCNs of the CT 
and CSA were constructed separately for the two groups. To improve the 
normality of the correlation, correlation coefficients r were then con-
verted to z-values using the Fisher transformation. By binarizing the 
correlation matrix using a series of sparsity thresholds, which resulted in 
certain percentages of connections, a series of unweighted and undi-
rected graphs were obtained for subsequent network analysis. Given that 
the selection of different threshold values could cause changes in small- 
world network parameters, we thresholded the correlation matrices over 
a wide range of sparsity (6 %–40 %) to avoid the uncertainty resulting 
from the threshold choice (He et al., 2007). The chosen range of sparsity 
allows the small-world network architectures to be properly estimated, 
and the number of spurious edges in each network is minimized, as 
indicated in previous studies (Achard & Bullmore, 2007; He et al., 
2007). All networks in this paper demonstrated small-world architec-
tures, as they had an almost identical path length (normalized path 
length ≈ 1) but were more locally clustered (normalized clustering co-
efficient > 1), consistent with previous studies. The lowest threshold 
was identified as the minimum network sparsity, in which the resultant 
networks were fully connected and estimable for small-worldness (Hui 
Xu et al., 2024). 

2.5. Graph-based network analysis 

Global and nodal network measures of SCNs were calculated using 
the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). We 
computed the normalized characteristic path length (which is defined as 
the shortest path length between all pairs of nodes) and global efficiency 
(which measures how efficiently information is communicated between 
nodes) as measures of network integration and the normalized clus-
tering coefficient (which evaluates the influence of different paths based 
on the connection weights of the node’s neighbors) and local efficiency 
(which is defined as the number of connections in the neighborhood of a 
certain node divided by the maximum number of possible connections 
between the neighbors of this node) as measures of network segregation. 
Small-worldness, which reflects the optimal balance of network inte-
gration and segregation, was also computed. The nodal degree, nodal 
efficiency, and nodal betweenness centrality were examined to identify 
group differences in nodal network measures. 

2.6. Statistical analysis 

In the following analyses, the potential confounding factors which 
showed significant group differences (including gender, total cognitive 
compositive, total household income, alcohol and tobacco use) were 
included as covariates. A nonparametric permutation test was employed 
to investigate statistical differences in network metrics between the 
groups. First, a network measure (clustering, path length, efficiency, 
nodal efficiency, betweenness, and degree) was computed separately for 
young adults with RCU and controls. Following that, the CT or CSA 
values of each subject were allocated into two groups, yielding an 
identical sample size as the original groups. New values were obtained 
for network metrics after recalculating the SCNs for both groups. Each 
permutation test was repeated 1000 times, and P-value < 0.05 was 
statistically significant with false discovery rate (FDR) corrections after 
multiple comparisons. Considering various densities, we compared their 

area under the curve (AUC) (density range of 0.06:0.01:0.4) between the 
two groups. For demographic variables, the chi-square test was used to 
assess difference in gender between groups, whereas group differences 
in other demographic variables were evaluated using two independent 
samples t-tests. 

3. Results 

3.1. Participants and characteristics 

There were no significant differences in age (t145 = –2.31, P = 0.27) 
and body mass index (t145 = 0.19, P = 0.84) between young adults with 
RCU and controls. There were significant differences in gender (χ2 

(1) =

23.46, P < 0.01) between the groups. Compared with controls, young 
adults with RCU had significantly lower education level (t145 = –8.89, P 
< 0.01), total cognitive compositive (t145 = –6.77, P < 0.01), and total 
household income (t145 = –7.82, P < 0.01). Regarding alcohol use, 
young adults with RCU consumed a significantly higher number of total 
drinks in the past seven days (t145 = 3.48, P < 0.01); however, they 
exhibited lower frequency of alcohol use in the past 12 months (t145 =

–3.37, P < 0.01), compared to controls. Moreover, young adults with 
RCU showed significantly higher total times used/smoked tobacco in the 
past seven days than controls (t145 = 5.33, P < 0.01). The demographic 
information of the participants is presented in Table 1. 

3.2. Group differences in global network integration measures 

In terms of CT, while no significant group differences existed in 
global network integration measures including normalized path length 
(Fig. 1A) and global efficiency (Fig. 1B), young adults with RCU dis-
played significantly altered small-worldness measures compared to the 
controls (Fig. 1C), which indicated altered balance of network integra-
tion and segregation in young adults with RCU. In terms of CSA, there 
were no significant group differences in normalized path length 
(Fig. 1D), global efficiency (Fig. 1E) and small-worldness measures 
(Fig. 1F). The P-values for these metrics are listed in Table 2. 

3.3. Group differences in global network segregation measures 

In terms of CT, young adults with RCU exhibited abnormal normal-
ized clustering coefficients compared to controls (Fig. 2A). There was no 
significant group difference in local efficiency (Fig. 2B). In terms of CSA, 
there were no significant group differences in global network segrega-
tion measures including normalized clustering coefficients (Fig. 2C) and 
local efficiency (Fig. 2D). The P-values for these metrics are listed in 
Table 2. 

3.4. Group differences in nodal network measures 

According to permutation tests, nodal network measures, including 
nodal degree, nodal efficiency, and nodal betweenness centrality, 
showed significant group differences, as displayed in Fig. 3. 

Regarding the CT, compared to controls, young adults with RCU 
exhibited an altered nodal degree of the left inferior parietal lobule, left 
rostral middle frontal gyrus, left superior frontal gyrus, right cuneus, 
right paracentral gyrus, and right insula; abnormal nodal efficiency of 
the left superior frontal gyrus, right paracentral gyrus, right superior 
parietal lobule, and right insula; and altered nodal betweenness cen-
trality of the left lingual gyrus, left superior frontal gyrus, right para-
central gyrus, right pars triangularis, and right superior parietal lobule 
(Fig. 3A). 

Concerning the CSA, compared with controls, young adults with RCU 
showed altered nodal degree of the left lateral occipital gyrus, left pos-
terior cingulate cortex, left precentral gyrus, right banks of the superior 
temporal sulcus, right pars opercularis, and right precentral gyrus; 
abnormal nodal efficiency of the left lateral occipital gyrus and right 
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pars opercularis; and changed nodal betweenness centrality of the left 
caudal middle frontal, left postcentral gyrus, left posterior cingulate, 
right pars opercularis, and right rostral anterior cingulate cortex 
(Fig. 3B). 

4. Discussion 

This study is the first to investigate abnormal construction of the 
SCNs in young adults with RCU, considering both CT and CSA. The 
findings revealed that young adults with RCU exhibited significant al-
terations in small-worldness and clustering coefficients in CT compared 

with controls. However, no significant differences in the CSA were 
observed between the groups. Additionally, nodal network measure-
ments displayed abnormalities in widespread brain regions, including 
the dorsolateral prefrontal cortex (DLPFC): caudal middle frontal gyrus, 
rostral middle frontal gyrus, and superior frontal gyrus), ventrolateral 
prefrontal cortex (VLPFC): pars opercularis and pars triangularis, and 
anterior cingulate cortex (ACC). These results highlight the implications 
of RCU on the structural organization of the brain in young adults. 

4.1. Altered small-worldness and clustering coefficient based on CT 

Defined as the ratio of the number of edges that are actually con-
nected to a node to the number of possible edges, the clustering coeffi-
cient is a crucial metric for network organization, reflecting the 
information continuity around the node and is considered an indicator 
of local efficiency (Rubinov & Sporns, 2010). Small-world networks 
combine network integration and separation with a high coefficient of 
clustering, thereby minimizing the cost of connectivity and increasing 
information flow (Rubinov & Sporns, 2010). In this study, young adults 
with RCU exhibited abnormal clustering coefficients in terms of CT 
compared to controls, suggesting that RCU may affect the information 
processing of the structural network and induce a tendency for the 
network to segregate (Gentili et al., 2015). Moreover, according to a 
functional connectivity-based graph theory study, this separation occurs 

Fig. 1. Group differences in “integration” and “small-worldness” metrics of structural covariance networks based on cortical thickness (CT) and cortical surface area 
(CSA) at the range of 6 %-40 % network sparsity, including (A) (D) normalized path length, (B) (E) global efficiency, and (C) (F) “small-worldness”. The upper and 
lower blue lines represented 95 % confidence interval, whereas the black dot line in the middle denoted the mean difference after 1000 permutations. The red line 
represented the true group differences, which fall outside the confidence interval indicated significant group differences (P < 0.05) under the current threshold. The 
positive values indicate young adults with recent cannabis use (RCU) > controls and negative values indicate young adults with RCU < controls. The subpanels 
showed group differences of the area under the curve (AUC) value in each metric of SCNs. Compared with controls, young adults with RCU showed significant altered 
AUC value of small-worldness in terms of CT. *, P < 0.05. 

Table 2 
Results of permutation tests for changes in the integration and segregation 
network measures of SCNs between groups.  

P- 
values 

Integration measures Small- 
worldness 

Segregation measures 

Normalized 
path length 

Global 
efficiency 

Normalized 
clustering 
coefficient 

Local 
efficiency 

CT  0.347  0.585  0.020  0.031  0.287 
CSA  0.822  0.374  0.895  0.900  0.639 

SCNs: structural covariance networks; CSA: cortical surface area; CT: cortical 
thickness. 
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predominantly during reward-information processing (Nestor et al., 
2020). Small-world alterations may also be associated with develop-
mental abnormalities of the brain caused by cannabis usage, which may 
be related to cannabis-induced synaptic connectivity deficits, subse-
quently leading to abnormal interregional connectivity (Orr et al., 
2019). The clustering coefficients and small-world network anomalies in 
the present study were consistent with the findings of a previous diffu-
sion tensor imaging-based graph theory analysis, indicating that RCU 
affected the white matter and gray matter structures of the brain, which 
may be primarily represented by alterations in global network metrics. 
However, no significant anomalies were observed in the network sepa-
ration and integration metrics based on CSA. This could perhaps be 
attributed to the differences in the spatial scale and biological signifi-
cance of CSA and CT, which have different effects on the topology of the 
network. CSA may be associated with the strength of connections be-
tween regions, whereas CT may be more reflective of the density of 
neurons within a region (Sanabria-Diaz et al., 2010). 

4.2. Altered nodal network measures of CSA and CT 

Regarding the node network metrics, young adults with RCU 
exhibited anomalies in widespread brain regions (the DLPFC, posterior 
cingulate cortex (PCC), VLPFC, and insula), which belong to the ECN, 
DMN, and salience network (SN). The DLPFC is one of the core regions in 
the ECN and participates in several cognitive control processes, such as 
working memory, attention, planning, and decision-making (Pan-
ikratova et al., 2020; Xu et al., 2018). Aberrant performance on a 
working memory task from cannabis users was associated with altered 
DLPFC activation and positively correlated with cannabis usage fre-
quency (Taurisano et al., 2016). Further, intervention by transcranial 
magnetic stimulation in the DLPFC can significantly reduce its abnormal 
activity, and this consequence decreases the frequency of cannabis use 
(Tang et al., 2021). 

The PCC and VLPFC are key regions of the DMN that play a vital role 
in thought processes and emotion regulation functions (Buckner, 2013). 
The PCC constitutes a large CB1 receptor density that progressively 

Fig. 2. Group differences in “segregation” metrics of structural covariance networks based on cortical thickness (CT) and cortical surface area (CSA) at the range of 6 
%-40 % network sparsity, including (A) (C) normalized clustering coefficient, and (B) (D) local efficiency. The upper and lower blue lines represented 95 % con-
fidence interval, whereas the black dot line in the middle denoted the mean difference after 1000 permutations. The red line represented the true group differences, 
which fall outside the confidence interval indicated significant group differences (P < 0.05) under the current threshold. The positive values indicate young adults 
with recent cannabis use (RCU) > controls and negative values indicate young adults with RCU < controls. The subpanels showed group differences of the area under 
the curve (AUC) value in each metric of SCNs. Compared with controls, young adults with RCU showed significant altered AUC value of normalized clustering 
coefficient in terms of CT. *, P < 0.05. 
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downregulates with cannabis use, affecting the structure of the PCC and 
potentially altering connectivity within the DMN, which may be a 
mechanism for cannabis-related changes in cognitive functioning (Wall 
et al., 2019). Our study found that PCC connectivity may change 
dynamically as a result of abstaining from cannabis for a period of time, 
which is consistent with previous studies (Hirvonen et al., 2012). This 
study found abnormal connectivity of the VLPFC; a previous study also 
demonstrated that the right VLPFC abnormality was particularly pro-
nounced in the RCU when performing a working memory task (Ma et al., 
2018). This anomaly could perhaps be related to the VLPFC compen-
sating for the abnormal connectivity of the DLPFC (Ma et al., 2018). In 
addition, the DLPFC and VLPFC belong to two different but mutually 
reinforcing loops in memory-related tasks (Leh et al., 2010). This study 
illustrated that connectivity abnormalities in the VLPFC may originate 
from DLPFC abnormalities, and this alteration is reversible. 

As a hub of the SN, the insula is responsible for information in-
teractions and emotional processing (Menon & Uddin, 2010). Altered 
insula connectivity is a marker of inflammation, and the gray matter 
volume of the insula shrinks when immune function is impaired, 
affecting cognitive, motor, and pain pathways linked with the insula 
(Cottam et al., 2018; Zhou et al., 2017). Moreover, cannabis primarily 
affects the dorsal and ventral anterior insula, which shows reversible 
abnormal connectivities (Flannery et al., 2022). This study indicated 

that cannabis usage may induce an inflammatory response that causes 
insula-related network alterations. Additionally, we found that ACC 
showed abnormalities in betweenness centrality. The ACC is a key re-
gion in the SN that plays a role in decision-making and attentional 
control (Menon & Uddin, 2010). ACC has a high density of CB1 re-
ceptors, and its abnormal connections to sensorimotor regions may be a 
mechanism for THC-associated reduction of pain sensation (Weizman 
et al., 2018). Further, abnormal activity of the dorsal ACC is connected 
with abnormalities in the cannabis-related reward system (Weizman 
et al., 2018). In conjunction with our findings, these results suggested 
that early-period ACC abnormalities in RCU may be associated with 
addictive behaviors, with regional variation as cannabis use frequency 
changes. ECN and SN activity are correlated but inversely related to the 
DMN, where the SN functions as a switch between the DMN and the ECN 
(Goulden et al., 2014). 

From the perspective of the entire network, abnormal interactions of 
key nodes in the DMN, ECN, and SN affect the structure and function of 
the triple networks, resulting in neuropsychiatric disease-related 
symptoms (De Ridder et al., 2022). A previous study found that THC 
and cannabidiol in cannabis affect the internal connectivity of the DMN 
and SN, respectively, and this effect decreases with cannabis abstinence 
treatment, with the most significant alterations occurring in the DMN 
(Wall et al., 2019). Moreover, research has revealed that cannabis use is 

Fig. 3. Group differences in nodal network metrics (nodal degree, nodal efficiency, and nodal betweenness centrality) of structural covariance networks based on 
cortical thickness (CT) and cortical surface area (CSA). Regions that showed significant differences of AUC at the range from 6 % to 40 % network sparsity in nodal 
degree, nodal efficiency, and nodal betweenness centrality between groups were colored (P < 0.05, false discovery rate corrected). The blue colour represented 
regions that have altered nodal degree in young adults with recent cannabis use (RCU); The green colour denoted regions that have altered nodal efficiency in young 
adults with RCU; The red colour represented regions that have altered nodal betweenness centrality in young adults with RCU. SFG, superior frontal gyrus; PCC, 
posterior cingulate cortex; Ins, insula; SPL, superior parietal lobule; ACC, anterior cingulate cortex. 
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linked with an increase in functional connectivity between the SN and 
ECN, which correlates with the severity of cannabis use (Imperatori 
et al., 2020). In comparison to our previous study, node anomalies in 
small-world and default mode network have found in both short and 
long-term cannabis users, and additionally, the range of network 
anomalies may expand with duration of cannabis use (H. Xu et al., 
2024). These findings highlight the effect of RCU on the structural or-
ganization of the brain in young adults, indicating that RCU can be 
detrimental to brain function, and providing valuable insights into 
minimizing this negative effect in RCU individuals. 

However, there were some limitations in this study. First, this was a 
cross-sectional study, which only observed and analyzed the RCU in a 
certain period, and determination of the causal relationship was 
impossible. Second, the RCU selected for this study also combined 
higher levels of alcohol and tobacco use, which may also affect the 
cannabis use results. Third, short-term cannabis use has now been found 
to affect structural brain networks, which may lead to cognitive 
dysfunction, so a comprehensive evaluation of the effects on the brain 
from cannabis is also needed. 

5. Conclusion 

Young adults with RCU exhibited significant variations in small- 
world and clustering coefficients for networks constructed using CT. In 
addition, significant anomalies in node degree, betweenness centrality, 
and node efficiency were observed in the DMN, SN, and ECN. These 
results suggest that RCU primarily influences the triple network struc-
ture of young adults, and this negative effect of RCU on individuals 
should be minimized. 
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