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A B S T R A C T   

Background: Even after curative resection, the prognosis for patients with intrahepatic cholangiocarcinoma 
(iCCA) remains disappointing due to the extremely high incidence of postoperative recurrence. 
Methods: A total of 280 iCCA patients following curative hepatectomy from three independent institutions were 
recruited to establish the retrospective multicenter cohort study. The very early recurrence (VER) of iCCA was 
defined as the appearance of recurrence within 6 months. The 3D tumor region of interest (ROI) derived from 
contrast-enhanced CT (CECT) was used for radiomics analysis. The independent clinical predictors for VER were 
histological stage, AJCC stage, and CA199 levels. We implemented K-means clustering algorithm to investigate 
novel radiomics-based subtypes of iCCA. Six types of machine learning (ML) algorithms were performed for VER 
prediction, including logistic, random forest (RF), neural network, bayes, support vector machine (SVM), and 
eXtreme Gradient Boosting (XGBoost). Additionally, six clinical ML (CML) models and six radiomics-clinical ML 
(RCML) models were developed to predict VER. Predictive performance was internally validated by 10-fold 
cross-validation in the training cohort, and further evaluated in the external validation cohort. 
Results: Approximately 30 % of patients with iCCA experienced VER with extremely discouraging outcome 
(Hazard ratio (HR) = 5.77, 95 % Confidence Interval (CI) = 3.73–8.93, P < 0.001). Two distinct iCCA subtypes 
based on radiomics features were identified, and subtype 2 harbored a higher proportion of VER (47.62 % Vs 
25.53 %) and significant shorter survival time than subtype 1. The average AUC values of the CML and RCML 
models were 0.744 ± 0.018, and 0.900 ± 0.014 in the training cohort, and 0.769 ± 0.065 and 0.929 ± 0.027 in 
the external validation cohort, respectively. 
Conclusion: Two radiomics-based iCCA subtypes were identified, and six RCML models were developed to predict 
VER of iCCA, which can be used as valid tools to guide individualized management in clinical practice.   
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1. Introduction 

Intrahepatic cholangiocarcinoma (iCCA), a nearly universally fatal 
malignancy, represents the second most primary liver malignancy, 
which has received widespread attention over recent years given the 
progressive increasing incidence worldwide [1]. The management of 
iCCA is usually determined by patient- and tumor-specific factors, and 
therapeutic considerations include surgical resection, transplantation, 
liver-directed therapies, and systemic therapy [2]. From a curative 
perspective, major liver resection has been the most appropriate choice, 
but only a minority of patients (12%–30 %) have resectable disease at 
the time of diagnosis [3–5]. However, the prognosis of these patients is 
still unsatisfactory, with a 5-year overall survival (OS) rate of approxi-
mately 30 % [6,7] and a median OS of a 30 months [8]. The main reason 
for this unfavorable postoperative long-term outcome is the extremely 
high incidence of tumor recurrence, ranging from 50 to 70 % [9,10]. 
Thus, there is an urgent need to explore novel excellent strategies for 
postoperative recurrence prediction that can facilitate immediate sur-
veillance and intervention (i.e., systemic chemotherapy) management in 
high-risk populations. 

The etiology of iCCA is complex and difficult to diagnose. Some iCCA 
patients are not even fully identified before surgery, which may lead to 
incomplete surgical resection [11]. Additionally, the biological behavior 
of iCCA is highly aggressive and metastatic, prone to local recurrence or 
metastasis after radical surgery, especially in patients presented with 
large tumors, lymph node metastases, and poor nutritional status 
[12–15]. Previous studies suggested that risk of recurrence following 
curative resection of iCCA can be influenced by various preoperative 
clinic-pathologic risk factors, including tumor size, macro and micro 
vascular invasion, CA199 levels, as well as lymph node metastasis status, 
and corresponding predictive models have been developed based on 
these factors [12,16–18]. However, patients with similar clinical char-
acteristics can still exhibit different recurrence patterns, leading to the 
suboptimal performance of predictive models in previous studies [2]. 
Radiomics is an emerging interdisciplinary field that integrates medical 
imaging and computer technology, which enables in-depth analysis of 
tumor characteristics, including morphology, texture, blood flow, as 
well as molecular structure and metabolism, through medical image 
data mining and artificial intelligence [19,20]. By harnessing these 
imaging biomarkers, radiomics can enhance diagnostic accuracy, 
prognostication, and treatment response prediction for cancers [21], 
and its application is well established in liver tumors [22,23]. Our recent 
study also showed that machine learning radiomics based on preoper-
ative contrast-enhanced CT could accurately predict patient sensitivity 
to lenvatinib treatment [24]. Compared with classical clinical and 
pathological factors, radiomics has shown obvious predictive advan-
tages, but studies on recurrence patterns of intrahepatic chol-
angiocarcinoma are still lacking. 

The timing of recurrence following radical hepatectomy can vary 
markedly among iCCA patients. Previous studies have mostly focused on 
early recurrence (<12 months), recurrence (12–24 months), and late 
recurrence (>24months) of iCCA, and found that they have completely 
different patterns, predictors, and outcomes [9,25]. Notably, Tsilimigras 
et al. explored the notion of very early recurrence (VER), defined as 
tumor recurrence within 6 months of hepatectomy, and showed that 
roughly one-quarter of iCCA patients had VER with extremely poor 
outcome, which is more common than late recurrence [26]. Therefore, 
the aim of this study was to apply machine learning approach to 
investigate the prediction and subtype identification of radiomics in VER 
of iCCA, based on a multicenter fine-gathered cohort. 

2. Methods 

2.1. Patient cohorts 

From June 1, 2011, to September 1, 2021, a total of 280 consecutive 

patients with pathologically confirmed iCCA receiving surgical resection 
were screened in three independent institutions, including The First 
Affiliated Hospital of Wenzhou Medical University, Eastern Hep-
atobiliary Surgery Hospital of Naval Medical University and The First 
Affiliated Hospital of Zhejiang Chinese Medical University. The exclu-
sion criteria were as follows: (1) Without dynamic CECT images within 
one month prior to surgery; (2) Did not receive curative hepatectomy; 
(3) Performance status (PS) score >2 or Child-Pugh score >7; (4) 
Combined with other malignancies; (5) Received other anti-tumor 
therapies prior to the surgery; (6) Patients died or were lost to follow- 
up within 6 months after resection without any evidence of recur-
rence. This study was approved by the institutional ethics review boards 
and adhered to the Declaration of Helsinki. Since this was a retrospec-
tive study, informed consent was not required. This study adhered to the 
reporting standards outlined in the TRIPOD statement (Supplementary 
Table S1). 

2.2. Data collection 

Demographic data, including age, gender, and body mass index 
(BMI, calculated as weight/height2) were extracted. PS score, Hepatitis 
B status, liver cirrhosis, Child-Pugh, and laboratory test, including pro-
thrombin, total bilirubin (TBIL), albumin (ALB), alanine aminotrans-
ferase (ALT), and aspartate aminotransferase (AST), were used to 
evaluate patients’ activities of daily living and liver function. Tumor 
characteristics of patients with iCCA were collected, including tumor 
diameter, tumor number, histological stage, lymph node assessment, 
perineural invasion, vascular invasion, and AJCC stage (defined 
following the 8th edition of the American Joint Committee on Cancer 
staging system) [27]. The latest preoperative blood tumor markers, 
including alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), 
and carbohydrate antigen 199 (CA199) were incorporated. Major hep-
atectomy was defined as removal of three or more segments. 

2.3. Primary outcomes and follow-up surveillance 

The VER of iCCA was defined as the appearance of recurrence within 
6 months after surgery. All patients with iCCA included into this study 
received radical hepatectomy. After resection, our multidisciplinary 
team (MDT) developed a stringent protocol to monitor tumor recurrence 
in patients, employing serum tumor markers, ultrasonography, CT, and/ 
or magnetic resonance imaging (MRI), and enacted treatment strategies 
for patients with recurrence. Patients are required to follow up once 
within the first month after surgery, then once every three months for 
the first two years, and subsequently once every six months thereafter. 
Disease recurrence was diagnosed with suspicious radiologic findings or 
histologically confirmed disease. Overall survival (OS) refers to the in-
terval between the date of surgery and the date of death from any cause, 
while recurrence-free survival (RFS) refers to the interval between the 
date of surgery and the date of iCCA recurrence. 

2.4. Region segmentation and radiomics analysis 

Image contrast-enhanced CT (CECT) with 5-mm-thick sections was 
used for radiomics analysis. CT acquisition and reconstruction param-
eters from different institutions are explained in Supplementary 
Table S2. The contents are as follows: tube voltage, 110–120 kVp; tube 
current, 130–375 mAs; rotation time, 0.5–0.8 s; image matrix, 512 ×
512; pixel spacing, 0.5–0.8 mm; and reconstruction interval, 5 mm. The 
nonionic contrast agents used were ioversol (Liebel-Flarsheim Canada 
Inc., Quebec, Canada) and iohexol (Yangtze River Pharmaceutical 
Group, Taizhou, China). The dosage administered for the nonionic 
contrast agent was 1.5 mL/kg of body weight, injected intravenously at a 
rate of 3 mL/s. The arterial phase and portal venous phase CT scans were 
performed at 25–30 s and 60–75 s post-injection, respectively. Two 
veteran radiologists with 8 years (Reader 1: YY Y) and 20 years (Reader 
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2: YJ Y) of experience in liver imaging blinded to clinicopathologic in-
formation independently reviewed the CECT images. For arterial and 
portal venous phases, the 3D tumor region of interest (ROI) image was 
manually segmented slice by slice using the MRIcroGL software. In the 
presence of multiple tumors, the lesion with the greatest axial di-
mensions was preferentially designated for subsequent examination. 
Moreover, reader 2 contoured the ROI on the 3D tumor images twice 
within one week. Subsequently, we implemented python package 
“pyradiomics” (https://pyradiomics.readthedocs.io/en/latest/index. 
html) [28] to extracted features, including shape-based, first order sta-
tistical, Gy level cooccurrence matrix (Glcm), Gy level run length matrix 
(Glrlm), Gy level size zone matrix (Glszm), Gy level dependence matrix 
(Gldm), and neighboring gray tone difference matrix (Ngtdm) features. 
The intra- and inter-observer correlation coefficient analysis was per-
formed to assess the feature stability. The inter-observer agreement 
analysis was conduct between the extraction of radiomics features by 
two readers, and intra-observer analysis was implemented using the 
twice extraction of reader 2 with “irr” R package. Only radiomics fea-
tures with inter-observer interclass correlation coefficient (ICC) values 
> 0.75 and intra-observer ICC >0.75 were selected for further research. 

The radiomics features contoured by reader 2 was preferentially 
chosen for the subsequent analysis. Z-score standardization method was 
performed to normalize these features, then independent samples t-test 
was employed to exclude metrics that showed no significant difference 
between the groups. Furthermore, we applied the maximum relevance 
minimum redundancy (mRMR) algorithm to evaluate the importance of 
features. 

2.5. Subtype identification 

The identification of molecular subtypes of cancers can facilitate 
clinical diagnosis and differential diagnosis, guide prognosis assessment 
and treatment regimen selection, and enable precision medicine and 
personalized care [29]. Radiomics can provide abundant quantitative 
data for oncological research and precision management. Consequently, 
we endeavored to investigate novel molecular subtypes of iCCA through 
clustering image features, which may correspond to molecular charac-
teristics and pathogenesis of the tumor. The K-means clustering algo-
rithm, a non-supervised learning technique, was utilized to classify the 
curated metrics. Through K-means clustering, distinct subtypes or 
clusters of diseases can be determined based on shared features or pat-
terns within the data. This information can provide valuable insights, 
revealing the heterogeneity of diseases and potentially leading to im-
provements in diagnosis, treatment selection, and personalized medi-
cine approaches. “NbClust” R package was used to perform K-means 
clustering and determine the optimal number of clusters [30]. It pro-
vides 30 indices which determine the number of clusters in a data set 
and the number with the most supported indices is considered the 
optimal number of clusters. Having identified novel radiomics-based 
iCCA subtypes, we employed chi-square tests to compare percentages 
among subtypes and investigate the intrinsic associations between CECT 
and tumor recurrence patterns. Besides, Kaplan-Meier (K-M) survival 
curves and log-rank tests were utilized to evaluate the correlations be-
tween the radiomics subtypes and survival outcomes (including both OS 
and RFS). 

2.6. Machine learning algorithms for VER prediction 

Patients with iCCA from three independent institutions were 
randomly divided into the training and external cohorts with a ratio of 
7:3. We utilized an integrated SMOTETomek method combing over- 
sampling and under-sampling to rectify imbalances with “imbalanced- 
learn” python package in the training cohort. Patients constituting the 
training set were employed to construct the models and subjected to 10- 
fold cross validation internally, and patients with iCCA in the external 
cohort were utilized to examine the proficiency of the resultant models. 

The screened radiomic features were ranked in descending order of 
importance score obtained from the minimum redundancy maximum 
relevance (mRMR) method. The features were then entered into the 
logistic regression model one by one. The area under the curve (AUC) 
was gauged for predicting VER, and the concomitant propensities were 
examined. We selected the number of features before the turning point 
and included them in the logistic regression model, thus calculating the 
radiomics score for subsequent analysis. As for clinicopathologic vari-
ables, independent factors were obtained through the univariate and 
multivariate logistic regression. 

First, based on independent clinicopathologic predictors, six types of 
clinical machine learning (CML) models were developed to predict VER 
of patients with iCCA in the training cohort, including logistic, random 
forest (RF), neural network, bayes, support vector machine (SVM), and 
eXtreme Gradient Boosting (XGBoost). Furthermore, we incorporated 
radiomics score to construct corresponding six types of radiomics- 
clinical machine learning (RCML) models to potentiate the prognosti-
cating merit. The 10-cross validation analysis was adopted to assess and 
compare the above-mentioned models. External validation is imperative 
when constructing classifiers. The CECT information and clinicopatho-
logic factors were extracted from the external cohort and substituted 
into the CML and RCML models. The prediction accuracy was verified by 
the receiver operating characteristic (ROC) curves, calibration curves, 
and decision curve analysis (DCA). In addition, bootstrapping algorithm 
with 5000 resamples was applied to evaluated the AUC values with 95 % 
confident interval (CI) of CML and RCML models. 

2.7. Statistical analysis 

All statistical analyses were implemented with SPSS 26.0, R software 
(version 4.0.2), and Python (version 3.9.1). A P-value <0.05 (two tailed) 
was deemed statistically significant. Numerical variables conforming to 
normal distribution were expressed as mean ± standard deviation (SD), 
and intergroup differences were evaluated using independent samples t- 
test; those not conforming to normal distribution were denoted by me-
dian and interquartile range, and intergroup differences were assessed 
by Wilcoxon signed-rank test. Categorical variables were represented by 
percentage, and intergroup differences were compared using chi-square 
test or Fisher’s exact test. 

3. Results 

3.1. Characteristics of iCCA patients with or without VER 

The workflow is shown in Fig. 1. A total of 280 iCCA patients 
following curative hepatectomy from three independent institutions 
were incorporated into the initial study, and finally 136 patients 
encountered the stringent inclusion criteria (Table 1). The mean patient 
age was 63.77 ± 10.54 years, and mean BMI was 22.27 ± 3.18 kg/m2. 
Sixty-five patients (47.79 %) were female, and 70 patients (51.47 %) had 
an PS score≥1. Overall, 34 patients (25.00 %) had Hepatitis B infection, 
and 35 patients (25.74 %) presented with liver cirrhosis. A subset of 
patients received adjuvant therapy (31 [22.79 %]), 23 patients (16.91 
%) had lymphatic metastasis; only a minority of individuals were 
amenable to laparoscopy. Twenty-two patients (16.18 %) had multiple 
lesions, and the specific number of lesions for each iCCA patient with 
multiple tumors are shown in Supplementary Table S3. 

Forty-four patients (32.35 %) experienced VER after curative hepa-
tectomy, whereas 92 patients (67.65 %) did not. Fifty-seven patients 
(41.91 %) had recurrence more than 6 months postoperatively, whereas 
35 patients (25.74 %) showed no recurrence during the follow-up 
period. There were a few significant differences in clinicopathologic 
variables between VER and non-VER groups. We found iCCA patients 
with VER tended to have low-undifferentiated histological stage (P =
0.005), higher AJCC stage (stage III-IV, P = 0.001), lymph node 
metastasis (P = 0.026), and higher preoperative CA199 levels (P <
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0.001). The distribution of major hepatectomy did not differ between 
the two groups, but a significantly higher proportion of the patients with 
VER underwent laparoscopy (P = 0.024). 

3.2. Prognosis and clinicopathologic predictors of patients with VER 

Patients with VER had significantly worse survival than the patients 
without VER (Hazard ratio [HR] = 5.77, 95%CI = 3.73–8.93, P < 0.001) 
(Fig. 2). The overall survival rates at 12, 24, and 36 months were 83.5 %, 
62.9 %, and 50.4 % for patients without VER respectively, compared to 
22.7 %, 6.8 %, and 3.4 % for patients with VER (Table 1). Notably, 
univariate and multivariable logistic analyses suggested that low- 
undifferentiated histological stage (Odds ratio [OR] = 3.017, 95%CI 
= 1.237–7.359, P = 0.015), III-IV AJCC stage (OR = 2.774, 95%CI =
1.217–6.319, P = 0.015), and higher CA199 levels (OR = 1.000, 95%CI 
= 1.000–1.000, P = 0.013) (Table 2) were independent predictors of 
VER in patients with iCCA, which were to be utilized for subsequent 
modeling. 

3.3. Identification of novel radiomics-based imaging subtypes in iCCA 

The inter- and intra-observer average Hausdorff distances for the 
segmented ROIs of each patient are shown in Supplementary Table S4. 
We extracted 214 total radiomics features from each patient: 107 fea-
tures from the arterial phase and 107 features from the venous phase 
images, respectively (Supplementary Fig. 1). These include 36 first- 
order statistical features, 28 shape-based features, 48 GLCM, 32 
GLRLM, 32 GLSZM, 28 GLDM, and 10 NGTDM features (Supplementary 
Table S5). After inter- and intra-reader screening criteria (ICC>0.75) 
and independent samples t-test (P < 0.05), 40 significant features were 
preliminarily selected. 

K-means clustering analysis of the 40 significant features determined 
that the optimal number of subtypes is 2 (Supplementary Fig. 2). Two 
distinct imaging iCCA subtypes were identified: subtype 1 (n = 94, 

69.12 %) and subtype 2 (n = 42, 30.88 %) (Fig. 3A). We found iCCA 
patients in the subtype 2 had a higher proportion of VER than subtype 1 
(47.62 % Vs 25.53 %) (Fig. 3B–C). Additionally, subtype 2 patients 
presented significant extremely poor OS (HR = 1.64, 95%CI =

1.03–2.61, P = 0.02) and RFS (HR = 1.80, 95%CI = 1.14–2.86, P =
0.004) than subtype 1 (Fig. 3D–E), which may be associated with 
distinct pathophysiological mechanisms and biological characteristics. 

3.4. Machine learning models based on radiomics features to predict VER 

The importance of 40 features ranked by mRMR method was shown 
in Fig. 4A. The AUC value of the most important feature was 0.682, and 
by sequentially adding increasing numbers of radiomics features in 
descending order of importance, the AUC value gradually increased 
(Fig. 4B). We found that when the number of features reached 35, the 
AUC value achieved the maximum of 0.916. Adding more features 
beyond that did not further increase the value. Therefore, we established 
the radiomics model based on these 35 features. 

The clinical variables between the training and external validation 
sets are listed in Supplementary Table S6, and most variables were 
randomly distributed. Six clinical machine learning (CML) models were 
developed based on the three independent predictors with 10-corss 
validation analysis to predict VER of patients with iCCA. The mean 
AUC value was 0.744 ± 0.018 (Fig. 5A). Among them, Logistic and SVM 
demonstrated superior predictive performance, and SVM showed the 
best performance with an AUC value of 0.770. Subsequently, we built six 
radiomics-clinical ML (RCML) models (mean AUC of 0.900 ± 0.014) 
integrating both clinical and radiomics features (Fig. 5B), and the per-
formance was significantly improved compared to the CML models. 
Notably, the Neural network model achieved the highest AUC value of 
0.919. 

Fig. 1. The workflow of the present study.  
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3.5. External validation of predictive models 

Afterwards, the corresponding CECT information and clinical vari-
ables were extracted from the patients in the external cohort and 
substituted to the CML and RCML models. As shown in Fig. 6A and D, the 
mean AUC values of CML and RCML models were 0.769 ± 0.065 and 
0.929 ± 0.027. The random forest model has the best predictive per-
formance in both ways, with the AUC value of 0.891 in the CML model 
and 0.974 in the RCML model. The calibration curves illustrated 
excellent consistency between the observed and predicted results of CML 
and RCML models (Fig. 6B and E). Finally, the DCA curves determined 
that RCML models serves as a superior tool for clinical VER assessment 
compared to the CML models (Fig. 6C and F). In addition, the results of 
bootstrapping algorithm are shown in Supplementary Table S7, which 
further demonstrate the excellent performance and robustness of the 
RCML models. To further assess the individual contributions of arterial 
and venous phase features, we separately incorporated the relevant 
features to re-establish the clinical-radiomics models. The mean AUCs of 
the clinical-radiomics model based on arterial phase feature were 0.713 
± 0.045 in the training cohort and 0.801 ± 0.094 in the external vali-
dation cohort (Supplementary Fig. 3). The mean AUCs of the clinical- 
radiomics model based on portal venous phase features were 0.896 ±
0.013 in the training cohort and 0.931 ± 0.035 in the external validation 
cohort (Supplementary Fig. 4). The clinical-radiomics models con-
structed solely based on the venous phase performed comparably to the 
comprehensive models, while the models relying solely on the arterial 
phase exhibited significantly lower predictive efficacy. In the prediction 
of postoperative VER in iCCA, features extracted from the venous phase 
demonstrate greater significance. 

To facilitate the convenient utilization of our research findings by 
surgeons in assessing the risk of postoperative VER in individualized 
patients with iCCA, we developed a clinical nomogram (Supplementary 
Fig. 5A) and a radiomics-clinical nomogram (Supplementary Fig. 5B) 

Table 1 
Clinical characteristics between patients with and without very early recurrence 
within 6 months after curative hepatectomy for intrahepatic 
cholangiocarcinoma.  

Variables No. (%) 

Total (N =
136) 

VER (N =
44) 

Non-VER (N =
92) 

P value 

Baseline information 
Age, year 63.77 ±

10.54 
62.73 ±
9.68 

64.27 ± 10.94 0.426 

Gender    0.266 
Female 65 (47.79 %) 18 (40.90 

%) 
47 (51.09 %)  

Male 71 (52.21 %) 26 (59.09 
%) 

45 (48.91 %)  

BMI, kg/m2 22.27 ± 3.18 22.11 ±
2.65 

22.35 ± 3.42 0.685 

PS Score    0.812 
0 66 (48.53 %) 22 (50.00 

%) 
44 (47.82 %)  

≥1 70 (51.47 %) 22 (50.00 
%) 

48 (52.17 %)  

Hepatitis B 34 (25.00 %) 12 (27.27 
%) 

22 (23.91 %) 0.672 

Liver cirrhosis 35 (25.74 %) 11 (25.00 
%) 

24 (26.09 %) 0.892 

Child-Pugh B 14 (10.29 %) 4 (9.09 %) 10 (10.87 %) 0.749 
Adjuvant therapy 31 (22.79 %) 10 (22.73 

%) 
21 (22.83 %) 0.990 

Tumor characteristics 
Tumor diameter, 

cm 
5.00 (3.50) 5.00 (3.00) 5.00 (3.00) 0.088 

Tumor number 
(≥2) 

22 (16.18 %) 9 (20.45 %) 13 (14.13 %) 0.349 

Histological stage    0.005 
Moderate-High 106 (77.94 

%) 
28 (63.64 
%) 

78 (84.78 %)  

Low- 
Undifferentiated 

30 (22.06 %) 16 (36.36 
%) 

14 (15.22 %)  

AJCC stage    0.001 
I-II 92 (67.65 %) 21 (47.73 

%) 
71 (77.17 %)  

III-IV 44 (32.35 %) 23 (52.27 
%) 

21 (22.83 %)  

Lymphatic 
metastasis, n 

23 (16.91 %) 12 (27.27 
%) 

11 (11.96 %) 0.026 

Vascular invasion, n 16 (11.76 %) 8 (18.18 %) 8 (8.70 %) 0.108 
Perineural invasion, 

n 
27 (19.85 %) 12 (27.27 

%) 
15 (16.30 %) 0.134 

Surgical margin, R1 9 (6.62 %) 4 (9.09 %) 5 (5.43 %) 0.470 
Approach, 

Laparoscopy 
15 (11.03 %) 1 (2.27 %) 14 (15.22 %) 0.024 

Hepatectomy, 
major 

48 (35.29 %) 18 (40.91 
%) 

30 (32.61 %) 0.343 

Laboratory test 
AFP, ng/ml 3.18 (2.70) 3.32 (3.95) 3.02 (2.47) 0.409 
CEA, ug/L 3.00 (8.00) 3.95 

(17.63) 
2.80 (4.08) 0.145 

CA199, U/ml 65.85 (644.8) 270.10 
(3889.5) 

45.45 
(228.23) 

<0.001 

TBIL, umol/L 10.00 (7.00) 9.00 (6.00) 11.00 (6.60) 0.060 
ALB, g/L 39.10 (6.70) 38.30 

(4.98) 
39.75 (7.53) 0.153 

ALT, IU/L 24.00 (20.00) 26.50 
(26.75) 

23.50 (20.00) 0.300 

AST, IU/L 27.00 (14.80) 30.00 
(27.75) 

26.00 (14.00) 0.099 

Prothrombin, s 13.50 (1.30) 13.45 
(0.80) 

13.50 (1.48) 0.860 

OS, m, median 
(95%CI) 

19.1 
(13.6–24.6) 

4.9 
(1.9–8.0) 

37.6 
(24.6–50.7) 

<0.001 

1-year survival rate 
(%) 

63.8 % 22.7 % 83.5 % <0.001 

2-years survival rate 
(%) 

44.4 % 6.8 % 62.9 % <0.001 

3-years survival rate 
(%) 

35.1 % 3.4 % 50.4 % <0.001 

Abbreviations: VER, very early recurrence; BMI, body mass index; PS, perfor-
mance status; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA199, 
carbohydrate antigen 19-9; TBIL, total bilirubin; ALB, albumin; ALT, glutamic- 
pyruvic transaminase; AST, glutamic oxaloacetic transaminase; OS, overall 
survival. 

Fig. 2. The Kaplan-Meier (KM) survival curves of patients with iCCA in the VER 
and Non-VER groups. iCCA, intrahepatic cholangiocarcinoma; VER, very 
early recurrence. 
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that can serve as clinical practical tools. 

4. Discussion 

Despite effective surgical resection, iCCA still exhibits an extremely 
high recurrence rate postoperatively, which is attributed to its highly 
invasive and heterogeneous nature [31]. Previous studies commonly 
defined early recurrence as recurrence within 1 year or 2 years after 
surgery and investigated clinical predictors and outcomes [32–34]. 
However, a considerable proportion of patients with iCCA have been 
found to relapse much earlier, within the first several months after 
resection, and they have an extremely poor prognosis but are often 
overlooked [25,26]. The present study aimed to investigate factors 
associated with VER (≤6 months) and develop predictive models based 
on clinical and radiomics features. We found that 32.35 % of patients 
experienced VER with 1-year survival rate of only 22.7 %. This incidence 
was higher than the 22.3 % reported in a previous international multi-
center cohort study [26]. Preoperative prediction of VER after surgery 
may help tailor adjuvant treatment strategies, postoperative surveil-
lance, and management. Here, this is the first study to apply ML radio-
mics using CECT to explore the relationship between imaging subtype 
and recurrence pattern, and the clinical utility of ML radiomics in pre-
dicting VER. 

The latest advances in radiomics provide a robust methodology to 
extract radiological features beyond human visual perception, with the 
potential to assess tumor biological characteristics, therapeutic 
response, and oncologic outcomes [35]. The appropriate combination of 
radiomic features and clinical factors may improve the accuracy of 
complex clinical decision making [21,36]. Xu et al. constructed a 
computational approach integrating large-scale clinical and radiomic 
features on the basis of CECT to predict microvascular invasion and 
outcomes in patients with hepatocellular carcinoma (HCC), yielding 
AUCs of 0.909 and 0.889 in the training set and test set, respectively 
[23]. Chen et al. developed a clinical-radiomics model for preopera-
tively selecting patients with intermediate-stage HCC who may objec-
tively respond to initial transarterial chemoembolization (TACE) [37]. 
Employing a multi-institutional cohort, Ji et al. accomplished a radio-
genomic study and inferred that CT imaging features can precisely 
prognosticate the macrotrabecular-massive subcategory in patients with 
HCC, which are linked to aberrant humoral immunity encompassing B 
lymphocyte infiltration and immunoglobulin biosynthesis [22]. For liver 
malignancies, w/o contrast CT primarily serves to roughly determine the 
tumor’s location, while the extent and internal structural features of the 
tumor are better visualized during the arterial and venous phases of 
contrast-enhanced CT. Hence, similar to previous studies [22,23,38], we 
selected only these two phases for analysis. We performed the K-means 
clustering algorithm to explore potential radiomics-based iCCA imaging 
subtypes to stratify patients with distant recurrence patterns and clinical 
outcomes. We discerned that iCCA patients classified into the subtype 2 
harbored a higher VER fraction (47.62 % Vs 25.53 %) and significant 
shorter survival time than subtype 1. This may be associated with the 
activation of more carcinogenic signaling pathways and immunosup-
pressive tumor microenvironment in iCCA patients with Subtype 2. 
Subsequent correlation analysis of tumor genomic, transcriptomic and 
other molecular biological data is needed to explore the molecular 
mechanisms behind the imaging features [39]. This classification 
strategy may assist clinical judgment of iCCA recurrence patterns, ach-
ieve preoperative non-invasive preliminary diagnosis, and provide ref-
erences for clinicians to select the optimal treatment regimen. 

The current study developed valuable machine learning models 
based on clinical and radiomics features to predict VER following 
curative hepatectomy for patients with iCCA. A single most significant 
radiomics feature alone suffices to assess VER with the AUC value of 
0.682, and an integrated radiomics score of 35 features is proficient at 
prognosticating VER with the AUC value of 0.916. This may be attrib-
utable to radiomic features possessing the potential to further delineate 

Table 2 
Bivariate and multivariable logistic regression analyses of factors associated 
with very early recurrence in patients with intrahepatic cholangiocarcinoma 
after curative hepatectomy.  

Variables Bivariate logistic analysis Multivariate logistic analysis 

OR (95%CI) P 
value 

OR (95%CI) P 
value 

Age 0.986 
(0.953–1.020) 

0.424   

Gender 
Female Reference    
Male 1.509 

(0.729–3.121) 
0.267   

BMI 0.977 
(0.872–1.094) 

0.682   

PS score 
0 Reference    
≥1 0.917 

(0.447–1.881) 
0.812   

Hepatitis B 1.193 
(0.526–2.705) 

0.672   

Liver cirrhosis 0.944 
(0.413–2.157) 

0.892   

Child Pugh score 
A Reference    
B 0.820 

(0.242–2.776) 
0.750   

Adjuvant therapy 0.994 
(0.422–2.342) 

0.990   

Tumor diameter 1.135 
(0.979–1.317) 

0.094   

Tumor number 
(≥2) 

1.563 
(0.611–3.994) 

0.351   

Differentiation 
Moderate-High Reference  Reference  
Low- 

Undifferentiated 
3.184 
(1.378–7.354) 

0.007 3.017 
(1.237–7.359) 

0.015 

AJCC stage 
I-II Reference  Reference  
III-IV 3.703 

(1.721–7.967) 
0.001 2.774 

(1.217–6.319) 
0.015 

Lymphatic 
metastasis 

2.761 
(1.106–6.893) 

0.030   

Vascular invasion 2.333 
(0.813–6.701) 

0.115   

Perineural invasion 1.925 
(0.811–4.566) 

0.137   

Surgical margin, 
R1 

1.740 
(0.443–6.827) 

0.427   

Laparoscopy 
method 

0.130 
(0.016–1.019) 

0.052   

Hepatectomy, 
Major 

1.431 
(0.681–3.006) 

0.344   

AFP 1.002 
(0.999–1.005) 

0.301   

CEA 0.999 
(0.993–1.004) 

0.648   

CA199 1.000 
(1.000–1.000) 

0.003 1.000 
(1.000–1.000) 

0.013 

TBIL 0.999 
(0.989–1.010) 

0.884   

ALB 0.949 
(0.881–1.023) 

0.172   

ALT 1.001 
(0.995–1.006) 

0.885   

AST 1.000 
(0.993–1.006) 

0.890   

Prothrombin 0.921 
(0.661–1.284) 

0.628   

Abbreviations: BMI, Body mass index; PS, Performance status; HBV, Hepatitis B 
virus; AFP, Alpha fetoprotein; CEA, carcinoembryonic; Antigen; CA, carbohy-
drate antigen; TBIL, Total bilirubin; ALB, Albumin; ALT, Alanine aminotrans-
ferase; AST, Aspartate aminotransferase; CONUT, Controlling nutritional status; 
PNI, Prognostic nutritional index; ALBI, Albumin-bilirubin. 
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the spatial heterogeneity and intrinsic biological characteristics of tu-
mors at multiple scales [40–42]. In addition, some clinical factors were 
found to be associated with VER, including histological stage, AJCC 
stage, and CA199, which were in accordance with previous studies. Poor 
differentiation has been correlated with iCCA recurrence and abbrevi-
ated survival in previous studies [8,43]. Augmented neoplastic cellular 
dysplasia and constituent number are anticipated to endow intensified 
encroachment predisposition and dissemination possibility in the tumor 
[44,45]. More advanced tumor stage signifies deeper neoplastic cell 
invasion into perihepatic tissues and vasculature, which may harbor 
macroscopically and adjunctively undetectable remnants. Despite 
radical hepatic resection, higher staged iCCA are prone to eliciting de 
novo oncogenic mutations. Prolonged progression may activate 

additional carcinogenesis-related cellular signaling pathways associated 
with proliferation, angiogenesis and cellular dissemination [46–48]. 
Similarly, as a vital serum biomarker for gastrointestinal tumor, CA199 
could monitor tumor burden. Patients with iCCA harboring elevated 
presurgical CA199 expression were prone to postoperative recurrence 
[26]. Compared with these clinical factors, the radiomics score showed 
stronger predictive accuracy. Radiomic features extracted from CECT 
such as tumor size, shape irregularity and ill-defined margins can be 
utilized to assess tumor invasiveness. Radiologic phenotypes are also 
capable of delineating tumor parenchyma and extracellular matrix, and 
distinct oncologic imaging modalities can reveal various components 
within the tumor immune microenvironment [49,50]. The average AUC 
value of six RCML models established by adding radiomics score was 

Fig. 3. Identification of two radiomics-related iCCA subtypes. The heatmap of 40 significant radiomics features between the two subtypes (A). Comparison of the 
compositional difference of recurrence patterns between the two subtypes (B–C). The KM survival curves of overall survival (D) and recurrence-free survival (E) in 
patients with iCCA between the two subtypes. iCCA, intrahepatic cholangiocarcinoma; VER, very early recurrence; NR, non-recurrence. 
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Fig. 4. The importance score of 40 significant radiomics features based on the mRMR algorithm (A). The features were input into the logistic regression model one by 
one in order of importance, and the AUC value was implemented to evaluate the accuracy of VER prediction (B). mRMR, minimum redundancy maximum relevance; 
AUC, area under the curve; VER, very early recurrence. 

Fig. 5. The average AUC value from 10-fold cross-validation of six clinical machine learning models (A) and six radiomics-clinical machine learning models (B) in the 
training cohort. AUC, area under the curve. 
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0.900 in the training set and 0.929 in the validation set, which suggested 
that these models may serve as a powerful predictive tool in future 
clinical practice. 

We applied a combination of self-extracted radiomics features and 
machine learning algorithms to evaluate the postoperative VER of iCCA. 
Machine learning (ML) has more flexible requirements for data pro-
cessing, and relevant features can be selected for learning after artifi-
cially extracting data for sorting and labeling. In this study, the widely 
recognized “Pyradiomics” python package [23,28], known for its high 
credibility in the field, was utilized to extract conventional features, 
then screened and modeled by ML algorithms, so it has strong inter-
pretability and expansibility. However, deep learning radiomics (DLR), 
which is better suited for utilizing raw data and automatically extracting 
features, possesses a complex internal structure that enables accurate 
results but compromises interpretability [51,52]. Radiomic analysis in-
volves the automated extraction of clinically relevant information and 
potential biological meanings from radiologic images [53]. Elucidating 
the underlying significance of features may provide new clues regarding 
the biological drivers of patient outcomes. In this study, the radiomics 
features closely associated with VER were mostly related to tumor size, 
3D shape, texture, and voxel intensity. On the one hand, these features 
(e.g., Shape_SurfaceArea, VoxelVolume, LeastAxisLength, etc.) offered a 
more comprehensive three-dimensional representation than the simple 
tumor size value, which was consistent with previous findings that 
larger tumors are associated with higher rates of postoperative recur-
rence. On the other hand, texture and voxel intensity-related features (e. 
g., glrlm_GrayLevelNonUniformity, gldm_DependenceNonUniformity, 
glszm_LargeAreaEmphasis, etc.) primarily reflected the heterogeneity of 
the tumor, with greater values implying greater complexity of the tumor 
microenvironment (e.g., expression of key oncogenes, immunosup-
pressive status, and metabolic pattern). A study by Sun et al. identified 
four types of prognostic radiomics phenotypes based on similar features 
as in this study and found that they exhibit markedly different immune, 
proliferative, treatment responsiveness, and cellular function pathway 
expression profiles [54]. Udayakumar et al. found that tumor features 
derived from MRI are associated with angiogenesis and inflammation 

and differed across tumors, which may indicate the effectiveness of 
anti-angiogenic drugs and immunotherapy [55]. However, due to the 
lack of genomic and immunohistochemical data, the biological signifi-
cance of the imaging features associated with VER in this study remains 
unclear. These features may reflect the biological structure of the tumor 
and its sensitivity to the tumor microenvironment, serving as a 
biomarker for more invasive biological behavior in ICC. In future 
studies, we will conduct transcriptome sequencing analysis on the cor-
responding samples to further explore the biological significance of the 
imaging features. 

To some extent, our findings are important to predict prognosis and 
optimize individual management in clinical practice. In the present 
study, roughly 30 % of patients with iCCA experienced VER with 
extremely discouraging outcomes. Preoperative identification of pa-
tients at high risk of recurrence and provision of aggressive post-
operative interventions may improve patient outcomes. Some 
interventional measures may provide some benefit to improve prog-
nosis. Including adjuvant chemotherapy, local radiotherapy, targeted 
therapy, immunotherapy, and lifestyle interventions [56,57]. Post-
operative adjuvant chemotherapy may reduce the risk of recurrence by 
eliminating residual disease, but there is still a controversy about the 
application value of adjuvant chemotherapy [58]. Capecitabine adju-
vant chemotherapy has now been adopted as a standard treatment by 
ASCO [59], and additional clinical trials are ongoing. Additionally, for 
iCCA patients stratified as high risk before surgery, close follow-up can 
be utilized for early detection and excision of new lesions. Genetic 
sequencing can also be selectively performed in high-risk patients to 
direct targeted therapies (such as FGFR inhibitors, IDH1/2 inhibitors, 
etc.) towards mutated individuals [60,61]. In this study, we successfully 
built several radiomics-based predictive models, which can provide 
significant references to assess the probability of VER. In addition, we 
identified two radiomics-based imaging subtypes to initially stratify 
patients into different recurrence patterns. Through our machine 
learning algorithms, accurate risk stratification and rigorous patient 
selection for additional treatments can be achieved. This is clinically 
important for optimizing treatment strategies and guiding clinical 

Fig. 6. External validation of clinical and radiomics-clinical machine learning models. The ROC curve analysis (A), calibration curve (B), and decision curve analysis 
(C) of the six clinical machine learning models. The ROC curve analysis (D), calibration curve (E), and decision curve analysis (F) of the six radiomics-clinical 
machine learning models. ROC, receiver operating characteristic. 
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decision-making. 

5. Conclusion 

Two radiomics-based iCCA subtypes were identified, and six RCML 
models were developed to predict VER of iCCA, which can be used as 
valid tools to guide individualized management in clinical practice. 
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