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Abstract
Purpose  Chronic hepatitis B-liver cirrhosis-hepatocellular carcinoma (CLH), commonly called the “liver cancer trilogy”, 
is a crucial evolutionary phase in the emergence of hepatocellular carcinoma (HCC) in China. Previous studies on early 
diagnostic biomarkers of HCC were limited to the end-stage of HCC and did not focus on the evolutionary process of CLH.
Methods  11 monotonically changing differentially expressed genes (MCDEGs) highly correlated with CLH were screened 
through bioinformatic analysis and KPNA2 was identified for further research. The serum KPNA2 expression in different 
CLH states was detected by Enzyme linked immunosorbent assay (ELISA). A nomogram model was constructed using 
univariate and multivariate Cox regression methods.
Results  The single-cell RNA-seq and bulk RNA-seq revealed that KPNA2 related to immune infiltration in HCC and may 
participate in cell cycle pathways in HCC. The serum KPNA2 expression was monotonically upregulated in CLH and was 
valuable for diagnosing different CLH states. Besides, chronic hepatitis B(CHB) patients, liver cirrhosis (LC) patients, and 
HCC patients were classified into subgroups with distinct serum KPNA2 expressions. Accordingly, patients with different 
serum KPNA2 expressions displayed various clinicopathological features. The AUC value of the nomogram model was 0.959 
in predicting the likelihood of developing HCC in CHB patients or LC patients. Finally, we found that KPNA2 expression 
was negatively correlated with the IC50 of four chemotherapeutic drugs in HCC.
Conclusion  KPNA2 was a novel serum biomarker for diagnosing different CLH states, monitoring the dynamic evolution 
of CLH, and a new therapeutic target for intervening in the progression of CLH.
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Introduction

Primary liver cancer is the third most common cause of 
cancer-related fatalities worldwide, posing a severe threat to 
human health and life (Sung et al. 2021). Hepatocellular car-
cinoma (HCC) is the most prevalent subtype of liver cancer, 
making up 85–90% of all cases (Mehta 2020; Wang et al. 
2017). Chronic hepatitis B-liver cirrhosis-hepatocellular car-
cinoma (CLH), commonly called the “liver cancer trilogy”, 
is a crucial evolutionary phase in the emergence of HCC in 
China (Xu et al. 2023; Hsu et al. 2023). Chronic hepatitis 
B (CHB) often causes recurrent liver damage, necrosis, and 
inflammation, with diffuse fibrosis, nodules, and pseudolob-
ules in the liver tissue, eventually progressing to cirrhosis 
(Stroffolini and Stroffolini 2023). Liver cirrhosis (LC) is a 
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major risk indicator for HCC, mainly because of a strong 
inflammatory milieu that encourages carcinogenesis in the 
sclerotic tissue (Pinter et al. 2016).

Due to the lack of distinct symptoms in the early stages 
and early diagnostic markers, most HCC patients are 
detected in advanced stages with a poor prognosis. Serologi-
cal screening and diagnostic markers for HCC that are com-
monly used now in clinical practice include AFP (Lim et al. 
2022), AFP-L3 (Malaguarnera et al. 2010), DCP (Tanaka 
et al. 2013) etc. However, they do not sufficiently reflect 
the dynamic development of CLH as a disease process and 
are not sensitive or specific enough. Hence, biomarkers 
that could predict CLH progression are urgently required to 
improve the prognosis of HCC patients.

Genes that show monotonically increasing or decreasing 
expression with significant differences during the course of 
CLH are defined as monotonically changing differentially 
expressed genes (MCDEGs), which may be closely asso-
ciated with disease progression and may be utilized as 
biomarkers to predict disease progression and prognosis. 
Karyopherin subunit alpha 2 (KPNA2) is one of the signifi-
cant MCDEGs screened. KPNA2, one of the seven adhe-
sion family members, is mostly located in the cytoplasm 
and nucleus (Zhang et al. 2015). KPNA2 participates in the 
body’s biological functions, such as differentiation (Li et al. 
2008) viral infection (Qu et al. 2004), immunomodulation 
(O'Brien et al. 2011), and metabolic response (Cassany et al. 
2004) etc. In recent years, surprisingly numerous bioinfor-
matic analyses and experimental evidence have clarified that 
KPNA2 exerted cancer-promoting effect on HCC and was 
implicated in the molecular process that led to the develop-
ment of HCC (Zan et al. 2019; Guo et al. 2019). Zhang et al. 
found that KPNA2 was overexpressed in the early stages of 
HCC and was an independent predictor of poor prognosis in 
HCC (Zhang et al. 2021). Chen et al. confirmed that KPNA2 
could facilitate tumor progression in HCC through the AKT 
signaling pathway in a hypoxic environment (Chen et al. 
2021) which was compatible with the outcomes of previous 
experiments (Wang et al. 2019). However, the diagnostic and 
prognostic value of KPNA2 has not been fully demonstrated.

In our study, we screened eleven MCDEGs highly cor-
related with CLH through bioinformatic analysis and 
identified KPNA2 for further research. We explored the 
significance of KPNA2 using survival, pathway enrich-
ment, gene network interaction and immune infiltration 
analysis. Moreover, we detected KPNA2 expression levels 
in the serum samples from CHB patients, LC patients, and 
HCC patients, respectively, and demonstrated its diagnos-
tic value for distinguishing different CLH states. In addi-
tion, we delved into the association between serum KPNA2 
expression and prognostic variables in CHB, LC, and HCC, 
respectively, and constructed a predictive nomogram model 
for CLH. Herein, we, for the first time, developed a holistic 

approach to research the CLH process from the perspective 
of MCDEGs. Hopefully, our study will provide a new serum 
biomarker for monitoring the dynamic evolution of CLH, 
a new therapeutic target for intervening in the progression 
of CLH, and a positive impact on the early prevention and 
treatment of HCC.

Materials and methods

Patient information and sample collection

A total of 205 serum samples with clinical information (86 
samples from CHB patients, 56 samples from LC patients, 
and 63 samples from primary HCC patients) were included 
in the study. The serum samples were collected between 
September 2021 and May 2023 from Wenzhou Medical Uni-
versity Affiliated Zhoushan Hospital (Zhoushan, China). The 
serum was centrifuged and stored at – 80 °C until testing. 
Meanwhile, the study subjects’ demographic and clinical 
data, radiographic examinations, and laboratory tests were 
obtained from hospital electronic medical records. It should 
be noted that all HCC and LC patients were developed from 
CHB, and serum samples from HCC patients were col-
lected before the surgery. All patients met diagnostic criteria 
according to the latest Chinese clinical guidelines. Moreo-
ver, the HCC patients were excluded by the following crite-
ria: (1) patients whose age < 18; (2) patients who combined 
with other malignancies; (3) patients who lacked critical 
clinical information; (4) relapsing patients.

Some of HCC patients underwent radical resection or par-
tial resection surgery in Wenzhou Medical University Affili-
ated Zhoushan Hospital, and their tumor tissues and adjacent 
normal tissues were also included in the study.

The work involving the serum and tissue specimens was 
reviewed and approved by the Ethics Committee of Wen-
zhou Medical University Affiliated Zhoushan Hospital.

Data acquisition from TCGA and GEO

The RNA-Seq expression profiles of 374 HCC patients 
and 50 normal samples were downloaded from the TCGA 
database (http://​portal.​gdc.​com), together with correspond-
ing clinicopathological information. The raw read counts 
of gene expression were normalized in the format of TPM. 
The clinicopathological information of patients in the TCGA 
cohort was illustrated in Table S1. Besides, GSE54238 (10 
normal livers, 10 chronic inflammatory livers, 10 cirrhotic 
livers, 26 HCC samples) and GSE121248 (70 HCC tissues 
and 37 adjacent normal tissues) from the gene expression 
omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/) were also used for monotonic gene screening.

http://portal.gdc.com
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Principal component analysis (PCA) and differential 
expression analysis

Principal component analysis (PCA), a data dimensionality 
reduction method, was carried out with the “prcomp” func-
tion and visualized by the “ggplot2” R package. The iden-
tification and visualization of the differentially expressed 
genes (DEGs) in the GEO dataset were conducted by the 
online tool “GEO2R”. The p value was adjusted by Ben-
jamini & Hochberg correction. Log2|FC|> 1 and adjusted 
p < 0.05 were defined as statistically significant for the 
DEGs. A Venn diagram of the DEGs was constructed using 
the “VennDiagram” R package, and the intersected DEGs 
were identified.

Survival analysis

DEGs related with prognosis were screened using univariate 
Cox analysis (p value < 0.05) and Kaplan–Meier survival 
analysis (p value < 0.05). Survival data were statistically 
analyzed using the "survival" R program. Kaplan–Meier 
curve was visualized using the “survminer” R package, with 
the median as the cut-off value.

Gene enrichment, protein–protein interaction (PPI) 
network construction and immune infiltration 
analysis

The “clusterProfiler” R package (Yu et al. 2012) was applied 
for Gene Set Enrichment Analysis (GSEA) (Subramanian 
et al. 2005) to ascertain the different pathways and func-
tions between KPNA2 high and low expression HCC 
groups. MSigDB (Liberzon et al. 2011) collections were 
used for predefined gene sets. A PPI network consisting of 
KPNA2 and its interacting proteins was constructed using 
the STRING software tool (http://​string-​db.​org) (Szklarczyk 
et al. 2019).

The most popular strategy for treating unresectable HCC 
is an immunotherapy based on immune checkpoint inhibi-
tors (ICIs) (He and Xu 2020). So far, there are no reliable 
biomarkers for predicting the success of immunotherapy 
for HCC. Hence, immune infiltration of KPNA2 was per-
formed in HCC. The TIMER database (https://​cistr​ome.​
shiny​apps.​io/​timer/) (Li et al. 2017) was utilized to explore 
the association between KPNA2 expression and immune cell 
infiltration and provide the comparison of tumor infiltration 
levels in HCC with different somatic copy number altera-
tions for KPNA2. Besides, the correlation between KPNA2 
expression and three significant immune checkpoint genes 
(PDCD1, HAVCR2, CTLA4, CD274) was detected by 
Spearman correlation analysis.

Single‑cell RNA‑seq (scRNA‑seq) analysis

The scRNA-seq dataset (GSE112271) of HCC, which 
included two patients, was obtained from the GEO data-
base. The R package “Seurat” was utilized to create the 
object and filter away poor-quality cells. To standardize 
the library size effect in each cell, scale.factor = 10,000 
was used to scale UMI counts. Then the PCA was per-
formed to identify the top 20 principal components (PC) 
according to the top 2000 highly variable genes. Cluster 
visualization was performed using UMAP reduction, and 
the marker genes for each cluster were filtered using the 
FindAllMarkers function with the adjusted p value < 0.01 
and absolute log2 (fold change) value > 1. Finally, the 
“SingleR” package was utilized to annotate cell types. 
Besides, Gene expression was represented using “Feature-
Plot” and “VlnPlot”.

To investigate the biological pathways in which differ-
ent cell clusters may participate, the average expression 
values of the cells in different clusters were calculated 
using the AverageExpression function. The score of the 
corresponding pathways for each cluster was calculated 
according to the “GSVA” package (Hanzelmann et  al. 
2013) and finally visualized by the “pheatmap” package.

Enzyme linked immunosorbent assay (ELISA)

The KPNA2 protein concentration in serum was assessed 
in duplicate using commercially available ELISA kits 
(ml060213, MLBio Ltd, China) according to the manu-
facturer’s instructions. The absorbance was read at 450 nm 
using an enzyme labelling instrument.

Hematoxylin–eosin (HE) staining 
and immunohistochemistry (IHC)

All specimens were paraffin-embedded, sectioned at 
a thickness of 4 μm, baked and placed in a fully auto-
mated immunohistochemistry instrument (BOND-MAX 
platform), dewaxed and repaired at 100 °C for 20 min 
using pH = 9.0 repair solution, peroxidase blocked for 
8 min, primary antibody incubated for 25 min at room 
temperature, horseradish peroxidase-labelled secondary 
antibody incubated for 8 min at room temperature, DAB 
color development for 10 min. Hematoxylin re-staining for 
8 min, blue return and neutral gum sealing, microscopic 
observation. The primary antibodies used are as follows: 
the Ki-67 (1:300, Zhongshan Golden Bridge Biotechnol-
ogy Ltd, China), p53 (1:600, Zhongshan Golden Bridge 
Biotechnology Ltd, China), and KPNA2 (1:200, Affinity 
Bioscience Ltd, China).

http://string-db.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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Construction of a predictive signature 
and nomogarm model

The characteristics were selected by univariate and mul-
tivariate logistic regression analysis to establish a logis-
tic regression model that can predict the likelihood of 
developing HCC in CHB or LC patients. A nomogram 
was created to integrate all predictive characteristics in 
the logistic regression model using “rms” package, and 
the area under the curve (AUC) was calculated to meas-
ure the model’s predictive power. Besides, the calibration 
curve and decision curve analysis were created to assess 
the model’s stability.

Drug sensitivity analysis

Given that few biomarkers could accurately predict 
chemotherapeutic drug susceptibility in HCC patients, 
we predicted the chemotherapeutic response for each 
sample from the TCGA dataset based on the GDSC data-
base (https://​www.​cance​rrxge​ne.​org/) (Yang et al. 2013) 
The prediction process was conducted using the R pack-
age “pRRophetic”. The samples’ half-maximal inhibitory 
concentration (IC50) was estimated by ridge regression.

Docking and molecular dynamics simulations

The protein crystal structures were obtained from the PDB 
database (https://​www.​resb.​org/​pdb), and the 3D structures 
of four agents were acquired from the PubChem database 
(https://​pubch​em.​ncbi.​nlm.​gov). AutoDock Tools (v1.5.7) 
was used to perform processes such as hydrogenation and 
charge calculation. The protein center was the docking 
site to set up the appropriate active pocket and docking 
parameters. Finally, the receptor protein was docked with 
the small molecular ligand by performing AutoDock 
Vina (v1.1.2), and the docking results were visualized by 
PyMoL (v2.5.4).

Statistical analysis

The patients were stratified into KPNA2-high and KPNA2-
low group according to the median cut-off value. Numeri-
cal variables that conform to normal distribution and 
homogeneity of variance were expressed as mean ± stand-
ard deviation, and differences between two groups were 
analyzed using t-test, while numerical variables that do 
not meet the above conditions were presented as medi-
ans (interquartile range [IQR]) and differences between 
two groups were analyzed using non-parameter analy-
sis. The categorical variables were described as numbers 

(percentages), and differences between two groups were 
tested using χ2 test, while Fisher exact test was used when 
the expected sample number was less than 5.

All analysis methods and R package were conducted 
by R (4.0.3) software. A difference of P < 0.05 was con-
sidered statistically significant (* p < 0.05; ** p < 0.01; *** 
p < 0.001).

Results

Initial screening for MCDEGs highly correlated 
with CLH

In GSE54238, PCA revealed no significant difference 
between normal liver and chronic inflammatory liver, while 
there was a significant difference between cirrhotic liver 
and HCC at the transcriptome level (Fig. 1A). We further 
performed differential expression analysis between chronic 
inflammatory liver and cirrhotic liver, cirrhotic liver, and 
HCC, respectively. 3887 DEGs were identified between 
chronic inflammatory liver and cirrhotic liver (Fig. 1B), 
including 1834 upregulated genes and 2053 downregulated 
genes. Between cirrhotic liver and HCC (Fig. 1C), 3485 
DEGs were identified, including 1867 upregulated genes 
and 1618 downregulated genes. After intersecting the above 
outcomes, we acquired 15 intersected upregulated genes 
(Fig. 1D) and 15 intersected downregulated genes (Fig. 1E). 
Besides, the heatmap (Fig. 1F) presented the differential 
expression of all the intersected genes in GSE54238.

Second screening for MCDEGs highly correlated 
with CLH

To further demonstrate that these candidate genes obtained 
from initial screening are related with the course of CLH and 
may serve as diagnostic or prognostic indicators,

we analyzed the relationship between these common 
genes and overall survival (OS) in HCC patients. As shown 
in Fig. 2A–M, we found that 13 candidate genes were cor-
related with the prognosis of HCC patients by Kaplan–Meier 
survival analysis, namely, NQO1, FAM72A, TRNP1, HK2, 
MCM3, KPNA2, ASNS, ZWINT, LOXL4, SLC16A3, 
HSBP1L1, VIPR1, ADRA1A. Meanwhile, fifteen can-
didate genes, namely, NQO1, FAM72A, TRNP1, HK2, 
MCM3, KPNA2, UBE2C, ZWINT, SLC16A3, SULT1C2, 
MYBL2, HSBP1L1, ISM2, VIPR1, ADRA1A, were associ-
ated with the prognosis of HCC patients based on univari-
ate COX regression analysis (Table 1). After combining the 
above outcomes, we identified 11 common genes linked to 
the prognosis of HCC patients both in Kaplan–Meier sur-
vival and univariate COX regression analysis (Fig. 2N). 

https://www.cancerrxgene.org/
https://www.resb.org/pdb
https://pubchem.ncbi.nlm.gov
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In addition, the differential expression of all the common 
genes in the TCGA dataset was presented by the heatmap 
(Fig. 2O).

Third screening for MCDEGs highly correlated 
with CLH

To enhance the reliability of the results, we carried 
out differential expression analysis of the above eleven 

screened genes in GSE121248. We found that only 
eight genes screened by the previous two steps, namely, 
NQO1, FAM72A, MCM3, KPNA2, ZWINT, HSBP1L1, 
VIPR1, ADRA1A, were still differentially expressed 
in GSE121248 (Fig. 3A–H). Moreover, the differential 
expression of eight genes in GSE121248 were presented 
by the heatmap (Fig. 3I). We also explored the correlation 
between the expression of eight genes in GSE54238, and 
the results (Fig. 3J) showed that the expression of eight 

Fig. 1   A-F Initial screening for MCDEGs highly correlated with 
CLH. A The PCA plot based on mRNA expression in GSE542348 
cohort. B, C Volcano plot showing DEGs between chronic hepati-
tis and liver cirrhosis, liver cirrhosis and hepatocellular carcinoma, 

respectively. D, E Common upregulated and downregulated DEGs in 
GSE54238. F Heatmap displaying differential expression of the com-
mon genes in GSE54238
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genes was all closely related with CHB, LC, and HCC, 
respectively.

Clinical relevance, functional enrichment, PPI 
network, immune infiltration of KPNA2 in HCC

Since obtaining liver tissue in clinical practice is inconven-
ient, measuring serum protein levels is more valuable. We 

found that only the protein expression of NQO1 (mass spec-
trometry: 490 ng/L), MCM3 (mass spectrometry: 150 ng/L), 
KPNA2 (mass spectrometry: 160 ng/L) could be detected in 
the blood based on the HPA database. MCM3 (Mohamed 
et al. 2022; Li et al. 2020) and NQO1 (Lin et al. 2017) have 
already been reported to be valuable in the diagnosis and 
prognosis of HCC and applied in clinical practice. Hence, 
we mainly focused on KPNA2, and we found that the protein 

Fig. 2   Second screening for MCDEGs highly correlated with CLH. 
A–M The K–M curves of thirteen candidate genes in TCGA data-
set. N Common candidate genes identified by initial screening were 

associated with the prognosis of HCC patients in TCGA dataset. O 
Heatmap displaying differential expression of the common genes in 
TCGA dataset



Journal of Cancer Research and Clinical Oncology	

1 3

expression of KPNA2 was higher in liver cancer tissue 
than in normal liver tissue according to the HPA database 
(Fig. 4A). We first investigated the relationship between 
KPNA2 expression and clinical features performed in HCC. 
The Sankey diagram (Fig. 4B) showed that high expression 
of KPNA2 was significantly correlated with TNM stage III, 
Grade 4, and poor prognosis. We then analyzed differen-
tial expression between KPNA2 high and low expression 
groups and included all DEGs for GSEA. The enriched 
items that ranked top 6 were “cell cycle” (Fig. 4C), “cell 
cycle mitotic” (Fig. 4D), “cell cycle checkpoints” (Fig. 4E), 
“M phase” (Fig. 4F), “metaphase and anaphase” (Fig. 4G), 
“mitotic prometaphase” (Fig. 4H), indicating that KPNA2 
played a crucial role in cell cycle regulation particularly 
mitosis. Besides, we constructed a PPI network of KPNA2 
and the proteins that interact with it (Fig. 4I). To deter-
mine the potential of KPNA2 as a biomarker for predict-
ing the efficacy of immunotherapy for HCC, we performed 
immune infiltration analysis of KPNA2. We discovered that 
KPNA2 expression was positively correlated with Th2 cell, 
T helper cell, follicular helper T cell, activated dendritic 
cell, macrophage, and negatively associated with cytotoxic 
cell, CD8+ T cell, plasmacytoid dendritic cell, Th17 cell, 
NK cell (Fig. 4J). More importantly, KPNA2 expression 
was positively correlated with PDCD1 (Fig. 4K), HAVCR2 
(Fig. 4L), CTLA4 (Fig. 4M), while it bore no correlation 
with CD274 (Fig. 4N). In addition, the SCNA module in 
TIMER compared tumor infiltration levels in HCC with 
different somatic copy number alterations for KPNA2. As 
depicted in the Box plot (Fig. 4O), the infiltration levels of 
CD4+T cell, macrophage, neutrophil, and dendritic cell var-
ied among each copy number status, including deep deletion, 

arm-level deletion, diploid/normal, arm-level gain, and high 
amplification.

Single‑cell analysis re‑indicated that KPNA2 
correlated to immune cell infiltration 
and participated in cell cycle pathways

Next, we collected one scRNA-seq dataset (GSE112271) 
to further explore expression profiles of KPNA2 in HCC. 
As shown in Fig. 5A, the number of genes detected in each 
cell (nFeature_RNA), the total number of mRNA molecules 
detected in the cell (nCount_RNA), and the proportion of 
mitochondrial gene expression in the cell (percent_mt) were 
performed to remove poor quality cells. The top 2000 highly 
variable genes were screened for clustering and cell identifi-
cation (Fig. 5B). Then we applied PCA to reduce the dimen-
sionality based on the similarity of gene expression profiles 
in cells (Fig. 5C). 13 clusters were identified (Fig. 5D), and 
5 immune cell types (dendrite cell, monocyte, neutrophil, B 
cell, T cell) were annotated (Fig. 5E). Notably, almost only 
T cells expressed KPNA2 (Fig. 5F), which agreed with the 
positive correlation between T cell (Th2 cell, T helper cell, 
follicular helper T cell) and KPNA2 expression. More inter-
estingly, we found that the top4 pathways enriched in T cells 
were “tumor proliferation signature”, “G2M checkpoint”, 
“DNA replication”, and “DNA repair” (Fig. 5G), which were 
all associated with cell cycle and re-proved that KPNA2 may 
participate in cell cycle modulation.

Diagnostic value of KPNA2 compared with AFP 
for distinguishing CLH states

The clinical indicator AFP is commonly used to diagnose 
HCC, so we compared KPNA2 with AFP in distinguishing 
CLH states (CHB/LC/HCC). As shown in Fig. 6A, serum 
KPNA2 protein levels monotonically upregulated in CLH 
(CHB vs LC: p = 0.0334;LC vs HCC: p < 0.0001). By con-
trast, there was no significant difference in serum AFP level 
between CHB patients and LC patients (p > 0.9999), while 
serum AFP level was lower in LC patients than in HCC 
patients (p = 0.0047, Fig. 6B).

To evaluate the diagnostic value of KPNA2 and AFP 
for classifying different CLH states, we constructed ROC 
curves and calculated AUC values, sensitivity, specificity, 
and maximum Youden index for each of these outcomes.

For CHB versus LC, the AUC values of KPNA2 (Fig. 6C) 
for distinguishing CHB patients from LC patients was 0.838 
(95%CI:0.766,0.909), and corresponding sensitivity, speci-
ficity, and maximum Youden index were 0.911, 0.721, 0.632 
(Table 2). Based on the above data, the recognition effi-
ciency of KPNA2 was surprisingly excellent. By compari-
son, the AUC value of AFP (Fig. 6D) for separating CHB 
patients from LC patients was 0.528 (95%CI: 0.423, 0.632), 

Table1   Fifteen candidate genes associated with prognosis of HCC 
patients in TCGA dataset in univariate COX regression analysis

Gene Hazard ratio (95% CI) P value

NQO1 1.102 (1.039–1.168) 0.001
FAM72A 2.536 (1.735–3.706)  < 0.001
TRNP1 1.234 (1.129–1.349)  < 0.001
HK2 1.225 (1.095–1.369)  < 0.001
MCM3 1.330 (1.128–1.568)  < 0.001
KPNA2 1.606 (1.360–1.897)  < 0.001
UBE2C 1.281 (1.145–1.433)  < 0.001
ZWINT 1.351 (1.176–1.552)  < 0.001
SLC16A3 1.331 (1.189–1.489)  < 0.001
SULT1C2 1.170 (1.052–1.302) 0.004
MYBL2 1.258 (1.142–1.387)  < 0.001
HSBP1L1 1.390 (1.106–1.747) 0.005
ISM2 1.608 (1.218–2.122)  < 0.001
VIPR1 0.727 (0.558–0.947) 0.018
ADRA1A 0.815 (0.693–0.958) 0.013
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suggesting that AFP was almost useless for the identification 
of CHB patients and LC patients.

For CHB versus HCC, it was worth noting that the AUC 
values of KPNA2 were higher than that of AFP for telling 
CHB patients from HCC patients (Fig. 6E,F). Besides, the 
AUC values (Fig. 6G), sensitivity, and maximum Youden 
index (Table 2) were markedly improved after combining 
KPNA2 with AFP using the predicted probability method.

For LC versus HCC, the AUC value of KPNA2 (Fig. 6H) 
for discriminating LC patients from HCC patients was 
0.721 (95%CI:0.622, 0.821), and corresponding sensitiv-
ity, specificity and maximum Youden index were 0.667, 
0.946, 0.613(Table 2). In contrast, the AUC values of AFP 
(Fig. 6I) for distinguishing LC patients from HCC patients 
was 0.830 (95%CI:0.758, 0.902) and its corresponding 

sensitivity (0.603), specificity (0.929) and maximun youden 
index(0.532) were all lower than those of KPNA2 (Table 2). 
Furthermore, the AUC values (Fig. 6J), sensitivity, and max-
imum Youden index (Table 2) were considerably improved 
after combining KPNA2 with AFP, which was very mean-
ingful because the early detection of HCC patients had more 
effective treatment options.

Associations between serum KPNA2 expression 
and prognostic variables in CHB patients

When compared with prognostic variables in CHB patients 
(Table S2), high KPNA2 expression was significantly corre-
lated with HBeAg( +) (39.3%, p = 0.0326), higher ALT level 
(24.00[17.00, 35.00] U/L, p = 0.0187), higher liver stiffness 

Fig. 3   Third screening for MCDEGs highly correlated with CLH. 
A–H The box plot displaying differential expression of eight genes 
in GSE121248. I Heatmap displaying differential expression of eight 

genes in GSE54238. J–L Chord diagram showing the correlation of 
eight genes in chronic hepatitis, liver cirrhosis and hepatocellular car-
cinoma, respectively
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level (7.85[6.20, 8.73] Kpa, p = 0.0007), all of which sug-
gested the poor prognosis for CHB patients and the poten-
tial for CHB evolving into LC. In addition, high KPNA2 
expression tended to be more frequently linked to higher 
BMI level (23.18 ± 2.57 kg/m2, p = 0.3899), lower platelet 
level (144.80 ± 17.52 × 109/L, p = 0.4019), higher glucose 
level (5.43[5.09, 5.79] mmol/L, p = 0.2072) and higher fat 
attenuation level (238.60 ± 40.92 dB/m, p = 0.3212) though 
these associations didn’t reach statistical significance.

Associations between serum KPNA2 expression 
and prognostic variables in LC patients

When compared with prognostic variables in LC patients 
(Table S3), high KPNA2 expression was significantly related 
to lower hemoglobin level (79.54 ± 27.20 g/L, p < 0.0001), 
lower platelet level (97.39 ± 69.14 × 109/L, p = 0.0316), 
lower albumin level (29.61 ± 6.11 g/L, p < 0.0001), higher 
glucose level (7.00[5.24,8.90] mmol/L, p = 0.0345), higher 
Child–Pugh score (p < 0.0001), higher gastrointestinal 
bleeding incidence (71.43%, p = 0.0005) and higher hepatic 
encephalopathy incidence (28.57%, p = 0.0218), all of 
which indicated poor prognosis and serious condition of 
CL patients. Besides, high KPNA2 expression showed a 
tendency to be more frequently linked to higher creatinine 
level (73.70[57.13,112.38] g/L, p = 0.0631), higher infec-
tion incidence(17.86%, p = 0.1927), and higher portal vein 
thrombosis incidence(14.29%, p = 0.3516) though these 
associations did not reach statistical significance.

Associations between serum KPNA2 expression 
and prognostic variables in HCC

When compared with prognostic variables in HCC patients 
(Table S4), high KPNA2 expression was significantly associ-
ated with lower albumin level (36.76 ± 5.97 g/L, p = 0.0178), 
lower high-density lipoprotein level (0.86 ± 0.32 mmol/L, 
p = 0.0345), higher cancer thrombus incidence (25.00%, 
p = 0.0265), more advanced stage(34.48%, p = 0.0184), 
higher grade (57.89%, p = 0.0163), higher microvascular 
invasion incidence (47.37%, p = 0.0033), higher Ki-67 posi-
tive rate (28.57%, p = 0.0450), and higher Child–Pugh score 
(p = 0.0347). In addition, the protein levels of KPNA2 in 
HCC tissues were detected by IHC. Differential expression 
of KPNA2 in HCC tissues of different histologic grades, 
microvascular invasion, and Ki-67 positive rate were shown 
in Fig. 7.

Construction of a predictive signature and nomogarm 
model for CLH

To predict the likelihood of developing HCC in CHB 
patients or LC patients, we established a binary logistic 

regression model (one group was CHB patients and LC 
patients, and the other was HCC patients). Based on uni-
variate and multivariate logistic regression analysis, four 
independent risk factors, namely, KPNA2 expression 
(OR = 1.001, p < 0.001), gender (OR = 0.017, p = 0.001), age 
(OR = 1.191, p < 0.001), and AFP (OR = 1.077, p = 0.006), 
were included in the model (Table3). We incorporated these 
factors into nomogram establishment (Fig. 8A) and con-
ducted ROC analysis to evaluate the predictive capacity of 
the model. Of note, we converted KPNA2 expression, age, 
AFP into dichotomous variables to enhance the aesthetic 
and application value of the nomogram. Results from AUC 
value (0.959, 95%CI:0.934–0.984; Fig. 8B), calibration 
(Fig. 8C), and decision curve analysis (Fig. 8D) suggested 
a tremendous predictive capacity and clinical validity of the 
nomogram model.

Drug sensitivity analysis for HCC patients with different 
KPNA2 expression

To explore the possible application of KPNA2 in chemo-
therapy or targeted therapy of HCC patients, we estimated 
the IC50 of four commonly used chemotherapeutic or tar-
geted drugs by combining drug sensitivity and gene expres-
sion profiling data. The spearman’s correlation analysis 
suggested that KPNA2 expression was negatively cor-
related with IC50 values of 5-fluorouracil (p = 3.48 × e−25, 
ρspearman =  – 0.50;Fig. 9A), doxorubicin (p = 1.64 × e−7, 
ρspearman =  – 0.27; Fig. 9B), gemcitabine (p = 8.16 × e−28, 
ρspearman = -0.53; Fig.  9C), sorafenib (p = 4.79 × e−13, 
ρspearman = -0.36; Fig. 9D).

Considering the good correlation between KPNA2 
expression and drug sensitivity of four agents, we further 
implemented molecular docking analysis to evaluate the 
binding energy and binding favorability. The results revealed 
that the binding free energy of KPNA2-5-fluorouracil com-
plex (Fig. 9E), KPNA2-doxorubicin complex (Fig. 9F), 
KPNA2-gemcitabine complex (Fig. 9G), KPNA2-sorafenib 
complex (Fig. 9H) were – 5.0 kcal/mol, – 7.6 kcal/mol, 
– 6.1 kcal/mol, – 7.2kacl/mol, respectively. Taken together, 
the four agents all exhibited excellent binding affinity to 
KPNA2.

Discussion

As one of the most prevalent cancers in the world, HCC 
has a complex biological development that involves several 
genes, multiple factors, and multiple stages of progression. 
CLH, also known as “liver cancer trilogy”, is the most 
crucial step in the evolution of HCC in China. Despite the 
increasing number of early screening and diagnostic mark-
ers for liver cancer being uncovered (Dalbeni et al. 2023; 
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Miao et al. 2023; Cai et al. 2023) previous studies have only 
focused on the end stage of HCC and neglected the progres-
sion of CLH as a disease process. Therefore, the diagnostic 
sensitivity and specificity of these biomarkers were not yet 
optimal and were not useful for early prediction of the dis-
ease course and prevention of HCC. Our work identified a 
significant MCDEG, namely KPNA2, using comprehensive 
analysis of scRNA-seq and bulk RNA-seq and verified its 
differential expression in serum level. Moreover, we found 
that serum KPNA2 expression was correlated with some 
poor prognostic factors in CHB, LC, and HCC, respectively. 
In addition, we thoroughly explored its diagnostic value for 
distinguishing different CLH states and established a nomo-
gram model for predicting CLH progression. Finally, we 
revealed the association between KPNA2 expression and 
IC50 of chemotherapeutic drugs for HCC.

We first performed differential expression analysis 
in GSE54238 and identified 30 intersected DEGs. After 
Kaplan–Meier survival and univariate COX regression 
analysis, we screened 11 intersected DEGs. We further 
analyzed differential expression in GSE121248 and finally 
identified 8 MCDEGs highly correlated with CLH. Since 
liver tissue is not easily accessible in clinical practice, 
measuring serum protein levels is more practical. Among 
8 MCDEGs, only NQO1, MCM3, and KPNA2 could 
be detected in the blood based on the HPA database. As 
MCM3 and NQO1 have already been reported to be valuable 
in the diagnosis and prognosis of HCC, we chose KPNA2 
for subsequent research. The GSEA showed that the top 6 
enriched pathways were “cell cycle”, “cell cycle mitotic”, 
“cell cycle checkpoints”, “M phase”, “metaphase and ana-
phase”, “mitotic prometaphase”, indicating that KPNA2 was 
involved in cell cycle process in HCC. The immune infiltra-
tion analysis revealed that KPNA2 expression was positively 
correlated with Th2 cell, T helper cell, follicular helper T 
cell and negatively linked to cytotoxic cell, CD8+ T cell, 
plasmacytoid dendritic cell. We also found that KPNA2 
expression was significantly associated with three significant 
immune checkpoints-PDCD1, HAVCR2 and CTLA4. The 
tumor immune microenvironment, including many immune 
cells and immunomodulators, can influence the efficacy of 
immune checkpoint inhibitors (ICIs) (Mehraj et al. 2021; 

Zhu et al. 2023). The absence of immune cell infiltration in 
tumor microenvironment is one of the principal constraints 
of current ICIs therapies. Many studies have focused on 
identification of biomarkers that could predict immuno-
therapeutic response effectively for clinical purpose (Ghah-
remanloo et al. 2019). For example, an 18-miRNA-based 
signature was constructed to give a valuable reference for 
ICIs treatment in colon adenocarcinoma. (Xue et al. 2021) 
and a immune-associated gene model was established to 
predict the efficacy of ICIs treatment in stomach adenocar-
cinoma (Xue et al.2022). Considering that KPNA2 expres-
sion was highly associated with immune cell infiltration and 
the expression of three critical immune checkpoint genes, 
KPNA2 could be a potential biomarker for ICIs therapy in 
HCC.

On the other hand, scRNA-seq analysis revealed that 
KPNA2 was mainly expressed in T cells, and the top4 path-
ways enriched in T cells were “tumor proliferation signa-
ture”, “G2M checkpoint”, “DNA replication”, and “DNA 
repair”, which re‑indicated that KPNA2 was correlated 
with immune cell infiltration and participated in cell cycle 
pathway. Prior research has also demonstrated that KPNA2 
strongly affected genes linked to the cell cycle and DNA rep-
lication in HCC (Yu et al. 2021). This engagement may be 
related to its participation as a nucleoplasmic protein trans-
porter in various cellular biological processes. For example, 
Gao et al. discovered that KPNA2 expression accelerated the 
cell cycle in HCC via increasing CCNB2 and CDK1 (Gao 
et al. 2018).

To further investigate the diagnostic and prognostic 
value of KPNA2 in CHB, LC, and HCC, respectively, we 
first tested KPNA2 expression levels in our serum samples 
using ELISA and found that serum KPNA2 protein levels 
monotonically upregulated in CLH. Based on AUC values, 
sensitivity, specificity, and maximum Youden index, KPNA2 
performed better than AFP in distinguishing CHB patients 
from LC patients, LC patients from HCC patients. It was 
noteworthy that AFP was almost useless for identification 
of CHB patients and LC patients. AFP had a better AUC 
value than KPNA2 in distinguishing LC patients from HCC 
patients, while KPNA2 performed better concerning sensi-
tivity. Indeed, sensitivity was more important for diagnosing 
HCC patients because HCC was a disease with a poor prog-
nosis, severe consequences of missed diagnosis, and early 
surgical resection can lead to better treatment results. Hence, 
KPNA2 had a more excellent application value than AFP 
for diagnosing HCC. Besides, sensitivity was considerably 
improved after combining KPNA2 with AFP, which may 
bridge the gap between single indicators in the diagnosis 
of HCC.

Later, we explored the associations between serum 
KPNA2 expression and prognostic variables in CHB, LC, 
and HCC, respectively. We discovered that high serum 

Fig. 4   Bioinformatic analysis of KPNA2 in HCC. A Differen-
tial expression between normal liver tissue and liver cancer tissue 
based on HPA database(immunohistochemistry). B The Sankey dia-
gram showing relationship between KPNA2 expression and clinical 
features. C–H The GSEA of DEGs between KPNA2 high and low 
expression groups. I PPI network of KPNA2 generated by STRING. 
J Association between KPNA2 expression and immune cell infiltra-
tion levels in LIHC. K–N Association between KPNA2 expression 
and immune checkpoint genes (PDCD1, HAVCR2, CTLA4, CD274) 
in LIHC. O The box plot presenting the distributions of each immune 
subset at each copy number status in LIHC. LIHC, Liver Hepatocel-
lular Carcinoma

◂
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KPNA2 expression was significantly correlated with many 
poor prognostic indicators in CHB, LC, and HCC, respec-
tively. Thus, using serum KPNA2 expression, a better prog-
nosis indication and risk stratification of patients can be 
achieved. For HCC, interestingly, high KPNA2 expression 

was significantly associated with a higher Ki-67 positive rate 
and microvascular invasion. Ki-67 is a tumor proliferation-
associated antigen, and high expression of Ki-67 means 
rapid tumor growth and severe disease (Huang et al. 2022). 
Microvascular invasion refers to the nesting mass of cancer 

Fig. 5   Analysis of single cell sequence data from multiregional sam-
ple in HCC. A Quality control assessment and data filtering of sin-
gle cell sequence data. B Highly variable genes used for clustering 
and cell identification. C Top 20 principal components were identi-

fied based on P value < 0.05. D Different cell clusters visualized by 
UMAP reduction. E Corresponding annotation of the cell clusters. 
F KPNA2 expression between different immune cell clusters. G The 
pathways highly enriched in different immune cell clusters
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Fig. 6   Diagnostic value of KPNA2 compared with AFP for dis-
tinguishing CLH states. Expression level of serum KPNA2 (A) 
and serum AFP (B) in different CLH states. For CHB vs LC, ROC 
curve analysis of KPNA2 (C) and AFP (D). For CHB vs HCC, ROC 

curve analysis of KPNA2 (E), AFP (F) and KPNA2 + AFP (G). 
For LC vs HCC, ROC curve analysis of KPNA2 (H), AFP (I) and 
KPNA2 + AFP (J). (* p < 0.05; ** p < 0.01; *** p < 0.001)

Table2   Evaluation indicators 
of classifiers for distinguishing 
CLH states

a Algorithm, logit (P) = 0.001*KPNA2 + 0.147*AFP-2.699
b Algorithm, logit (P) = 0.001*KPNA2 + 0.03*AFP-2.099

Name Classifier AUC​ Sensitivity Specificity Maximum 
Youden 
index

CHB vs LC KPNA2 0.838 0.911 0.721 0.632
AFP 0.528 0.482 0.674 0.157

CHB vs HCC KPNA2 0.870 0.714 0.919 0.633
doAFP 0.842 0.714 0.942 0.656
(KPNA2 + AFP)a 0.937 0.857 0.942 0.799

LC vs HCC KPNA2 0.721 0.667 0.946 0.613
AFP 0.830 0.603 0.929 0.532
(KPNA2 + AFP)b 0.852 0.825 0.911 0.736
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Fig. 7   Differential expression of KPNA2 in HCC tissues of different 
histologic grades, microvascular invasion, and Ki-67 positive rate. 
Left column(KPNA2 high expression group):KPNA2 high expres-

sion/high-grade/MVI:M2/Ki-67( +)50%; Right column(KPNA2 low 
expression group): KPNA2 low expression/low-grade/MVI:M0/
Ki-67( +)10%. MVI: microvascular invasion
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cells seen microscopically in the lumen of endothelium-
lined vessels, which can be used as a prognostic indicator 
of tumors (Ballard 2023). These findings agreed with the 
outcomes of earlier experiments. Drucker et al. demon-
strated that KPNA2 could increase stathmin expression, 
which contributes to the metastasis and invasion of HCC 
cells (Drucker et al. 2019). Jiang et al. also discovered that 
overexpression of nuclear KPNA2 indicated the early recur-
rence and poor prognosis in patients with HCC after hepa-
tectomy (Jiang et al. 2014).

To predict the likelihood of developing HCC in CHB 
patients or LC patients, we established a binary logistic 
regression model consisting of 4 independent risk factors 
(KPNA2 expression, gender, age, AFP). Then we incor-
porated these factors into nomogram establishment, and 
the AUC value of ROC curve was 0.959, which exhibited 
extremely excellent predictive capacity. In addition, we 
found that KPNA2 expression was negatively correlated with 
IC50 values of 5-fluorouracil, doxorubicin, gemcitabine, and 
sorafenib, suggesting that HCC patients with high KPNA2 
expression may benefit from these chemotherapeutic drugs. 
This data supported the idea that KPNA2 would likely be a 
key target for the treatment of HCC in the future.

KPNA2, in recent years, has been recognized as a 
biomarker for malignancies. Previous research has dem-
onstrated that it contributed to the promotion of malig-
nant features in various cancer types (Wang et al. 2011; 
Sakai et al. 2010; Han and Wang 2020). Nevertheless, 

rare reports on the involvement of KPNA2 in HCC can be 
found. KPNA2 plays an essential role in nucleoplasmic 
transport (Christiansen and Dyrskjøt 2013). The investiga-
tors suggested that the nuclear KPNA2 expression might 
provide a selective advantage in the emergence of HCC. 
Zhong et al. showed that KPNA2 encourages the prolif-
eration and invasion of HCC by in vitro tests employing 
several cell lines (Lin et al. 2018). Unfortunately, little was 
known about the molecular mechanism behind KPNA2's 
involvement in the onset and progression of HCC. Thus, 
our study highlighted the role of KPNA2 in several aspects 
of CLH, which helped to elaborate on the involvement of 
KPNA2 in HCC progression.

There are still some areas for improvement in the study. 
First, this study was only a retrospective study, and further 
prospective studies with a sufficiently large sample scale 
are required to corroborate each other. Second, additional 
in vivo and in vitro experiments are essential to clarify the 
molecular mechanism underlying KPNA2’s effects on the 
progression of CLH.

In conclusion, we, for the first time, developed a holistic 
approach to research the CLH process from the perspective 
of MCDEGs. KPNA2 was a significant MCDEG highly 
correlated with CLH and was valuable for distinguishing 
different CLH states. We demonstrated that serum KPNA2 
expression was correlated with many poor prognostic 

Table 3   Binary logistic 
regression analysis to identify 
statistically significant 
characteristics

BMI body mass index; AFP alpha-fetoprotein;WBC white blood cell; Hb hemoglobin; PLT platelet; AST 
aspartate aminotransferase; ALT alanine aminotransferase; TBil total bilirubin

Characteristics Univariate logistic analysis Multivariate logistic analysis

OR (95% CI) P value OR (95% CI) P value

KPNA2 expression 1.001 (1.001, 1.001)  < 0.001 1.001 (1.001, 1.001)  < 0.001
Gender 5.268 (2.235, 12.419)  < 0.001 0.017 (0.002, 0.176) 0.001
Hypertension 0.328 (0.159, 0.678) 0.003 2.086 (0.423, 10.301) 0.367
Diabetes 0.439 (0.210, 0.919) 0.029 2.571 (0.636, 10.393) 0.185
Age 1.082 (1.044, 1.122)  < 0.001 1.191 (1.088, 1.303)  < 0.001
BMI 1.125 (1.023, 1.236) 0.015 1.130 (0.902, 1.415) 0.289
AFP 1.057 (1.023, 1.092) 0.001 1.077 (1.022, 1.136) 0.006
WBC 1.028 (0.911, 1.159) 0.658
Hb 1.001 (0.991, 1.010) 0.905
PLT 0.997 (0.993, 1.002) 0.198
AST 1.017 (1.005, 1.029) 0.006 1.004 (0.994, 1.014) 0.481
ALT 1.010 (1.000, 1.019) 0.046 1.003 (0.998, 1.019) 0.702
TBil 1.006 (0.999, 1.014) 0.116
Creatinine 1.004 (0.994, 1.014) 0.414
Albumin 0.944 (0.908, 0.981) 0.003 1.048 (0.960, 1.144) 0.299
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variables in CHB, LC, and HCC, respectively. In addition, 
a predictive nomogram consisting of four independent 
indicators was constructed for CLH. We also found that 
KPNA2 expression was negatively correlated with IC50 
values of four chemotherapeutic drugs in HCC, namely, 
5-fluorouracil, doxorubicin, gemcitabine, and sorafenib. 

Therefore, this work provided a new serum biomarker for 
diagnosing different CLH states, monitoring the dynamic 
evolution of CLH, and a new therapeutic target for inter-
vening in the progression of CLH.

Fig. 8   A predictive model was established for CLH. A The nomogram combining four independent risk factors was developed for predicting the 
occurrence of HCC. The predicive ability of nomogram were tested by ROC analysis (B), Calibration curve (C) and Decision curve analysis (D)
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